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Abstract. Given a smooth oriented manifold M with non-empty boundary,

we study the Pontryagin algebra A = H∗(Ω) where Ω is the space of loops

in M based at a distinguished point of ∂M . Using the ideas of string topology
of Chas–Sullivan, we define a linear map {{−,−}} : A⊗A→ A⊗A which is a

double bracket in the sense of Van den Bergh satisfying a version of the Jacobi
identity. For dim(M) ≥ 3, the double bracket {{−,−}} induces Gerstenhaber

brackets in the representation algebras associated with A. This extends our

previous work on the case dim(M) = 2 where A = H0(Ω) is the group algebra
of the fundamental group π1(M) and the double bracket {{−,−}} induces the

standard Poisson brackets on the moduli spaces of representations of π1(M).
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Introduction

A remarkable feature of an oriented surface Σ discovered by Goldman [Go1,
Go2] is a natural Lie bracket in the vector space generated by the free homotopy
classes of loops in Σ. If Σ is connected and closed, then Goldman’s Lie bracket arises
from a symplectic structure on the moduli space of representations of the funda-
mental group π = π1(Σ) in a Lie group G. This space Hom(π,G)/G consists of the
conjugacy classes of homomorphisms π → G. The resulting symplectic structure
incorporates the classical Kähler forms on the Teichmüller space (G = PSL(2,R)),
on the Jacobi variety (G = U(1)), and on the Narasimhan–Seshadri moduli spaces
of semistable vector bundles (G = U(N) with N ≥ 1). Goldman’s construction
also yields the Atiyah–Bott symplectic structure determined by a compact Lie
group and a non-degenerate ad-invariant symmetric bilinear form on its Lie alge-
bra. If Σ is connected and ∂Σ 6= ∅, then similar methods yield a weaker structure,
namely, a Poisson bracket in the algebra of conjugation-invariant smooth func-
tions on Hom(π,G), see [FoR, GHJW]. This bracket extends to a quasi-Poisson
bracket in the algebra of all smooth functions on Hom(π,G), see [AKsM]. Analo-
gous results hold for the general linear group G = GLN over any commutative ring
provided Hom(π,GLN ) is treated as an affine algebraic set and smooth functions
are traded for regular functions, see [MT1].

Goldman’s Lie bracket for surfaces was generalized by Chas and Sullivan [CS1],
[CS2] to manifolds of arbitrary dimensions. Chas and Sullivan call this area of study
the “string topology”. The present memoir exhibits new phenomena in string topol-
ogy. We consider the Pontryagin algebras of manifolds with boundary and construct
a bracket in the associated representation algebras. For surfaces, our bracket is the
quasi-Poisson bracket on Hom(π,GLN ) mentioned above. In dimension ≥ 3, the
representation algebras are graded, and our bracket is a Gerstenhaber bracket, i.e.,
it satisfies the axioms of a Poisson bracket with appropriate signs. In the rest of
the Introduction we focus on manifolds of dimension ≥ 3.

We recall the concept of a representation algebra following [Pr, LbW, Cb].
Fix an integer N ≥ 1 and a field F which will be the ground field of the algebras.
Given an algebra A and a commutative algebra B, consider the set S = S(A,N,B)
of all algebra homomorphisms from A to the algebra MatN (B) of (N ×N)-matrices
over B. Each a ∈ A and each pair of indices i, j ∈ {1, . . . , N} determine a mapping
aij : S → B which evaluates a homomorphism A → MatN (B) at a and takes the
(i, j)-th entry of the resulting matrix. These mappings are the “coordinates” on S,
generating an algebra of “polynomial” B-valued functions on S. These coordinates
satisfy various polynomial relations some of which are universal, i.e., hold for all B.
By definition, the N -th representation algebra AN of A is generated by the symbols
{aij | a ∈ A, 1 ≤ i, j ≤ N} subject to those universal relations. One of the universal
relations says that the generators commute, so that AN is a commutative algebra.
For every commutative algebra B, the algebra AN projects onto the algebra of
polynomial B-valued functions on S(A,N,B) described above. We view AN as a
universal form of these polynomial algebras. If A is graded, then so is AN .

Our construction of brackets in the representation algebras {AN}N≥1 is based
on the technique of Van den Bergh [VdB]. He showed how to construct such
brackets from a linear map {{−,−}} : A⊗A→ A⊗A satisfying certain conditions.
Van den Bergh calls such maps double Poisson brackets. We use the term bibracket
for the version of double brackets used here. Also, we work in the graded setting and
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rather consider Gerstenhaber bibrackets satisfying a graded version of the Jacobi
identity. We show that a Gerstenhaber bibracket {{−,−}} in a graded algebra A
induces a Gerstenhaber bracket {−,−} in AN for all N ≥ 1. In terms of the
generators, the bracket {−,−} is defined as follows: for any a, b ∈ A, i, j, u, v ∈
{1, . . . , N}, and any finite expansion {{a, b}} =

∑
α xα ⊗ yα ∈ A⊗A, we set

{aij , buv} =
∑
α

(xα)uj(yα)iv.

The bracket {−,−} is invariant under the natural actions of the group GLN (F) and
the Lie algebra MatN (F) on AN .

Consider now a smooth oriented manifold M of dimension ≥ 3 with base point
? ∈ ∂M 6= ∅. Let Ω = Ω? be the space of loops in M based at ?. The graded vector
space A = H∗(Ω;F) carries an associative multiplication induced by concatenation
of loops. This turns A into a graded algebra, the Pontryagin algebra of M . We
define a so-called intersection bibracket in A as follows. Pick an embedded path
ς : I = [0, 1] ↪→ ∂M connecting the point ? to another point ?′. Consider any
singular cycles κ : K → Ω = Ω? and λ : L → Ω′ = Ω?′ . Let D be the set of all
tuples (k ∈ K, s ∈ I, l ∈ L, t ∈ I) such κ(k)(s) = λ(l)(t). Each tuple (k, s, l, t) ∈ D
determines two loops in M based at ?. The first loop goes along ς from ? to ?′,
then along the path λ(l) from ?′ = λ(l)(0) to λ(l)(t) = κ(k)(s) and then along
the path κ(k) back to κ(k)(1) = ?. The second loop goes along the path κ(k)
from ? = κ(k)(0) to κ(k)(s) = λ(l)(t), then along λ(l) to λ(l)(1) = ?′ and finally
along ς−1 back to ?. Under appropriate transversality assumptions on κ and λ, the
resulting map D → Ω× Ω is a singular cycle of dimension

dim(K) + dim(L) + 2− dim(M).

Passing to homology classes and using the isomorphism A = H∗(Ω;F) ' H∗(Ω′;F)
determined by ς, we obtain the intersection bibracket in A. Our main result is the
following theorem.

Theorem. The intersection bibracket in the Pontryagin algebra is a well-defined
Gerstenhaber bibracket. It is natural with respect to diffeomorphisms of manifolds
preserving the orientation and the base point.

The intersection bibracket generalizes to higher dimensions the bibracket of a
surface defined in [MT1]. By the general theory, the intersection bibracket in the
Pontryagin algebra A induces a Gerstenhaber bracket in AN for all N ≥ 1. If the
manifold M is simply connected and F is a field of characteristic zero, then the
Milnor–Moore theorem identifies A with the universal enveloping algebra of the
graded Lie algebra π∗(M) = ⊕p≥2 πp(M) (with the degree shifted by 1 and the
Whitehead bracket in the role of the Lie bracket). In this case, the algebras AN
can be viewed as the representation algebras of π∗(M).

Despite the simplicity of the underlying idea, a precise definition of the inter-
section bibracket requires considerable efforts. First of all, we introduce a version
of singular homology using manifolds with corners instead of simplices. Homology
theories based on manifolds with corners were implicit already in [CS1] and were
since considered by several authors, see, for example, [CD] and [Ci]. These theories
are insufficient for our aims and we develop our own approach. For any topological
space X, we define polychains in X as oriented manifolds with corners endowed
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with additional structure including an identification of some faces, a map to X
compatible with this identification, and F-valued weights assigned to the connected
components (these weights play the role of the coefficients of singular simplices in
singular chains). We define a reduction of polychains which eliminates redundant
connected components (like, for example, components of weight zero). Each poly-
chain in X has a well-defined reduced boundary. If it is void, then the polychain
is a polycycle. The polycycles in X considered up to disjoint unions with reduced

boundaries form a graded vector space H̃∗(X), the face homology of X. The key
theorem enabling our construction of bibrackets says that the usual singular ho-

mology H∗(X) = H∗(X;F) embeds in H̃∗(X) as a direct summand.
Given a manifold M and a point ? ∈ ∂M as above, we define smooth polychains

in the loop space Ω = Ω? of M and show that any pair of face homology classes
of Ω can be represented by transversal smooth polycycles. This allows us to carry
out the intersection construction outlined above and to obtain a linear map

Υ̃ : H̃∗(Ω)⊗ H̃∗(Ω)→ H̃∗(Ω× Ω).

This map induces a linear map in singular homology Υ : A⊗A→ H∗(Ω×Ω) where
A = H∗(Ω). The Künneth theorem allows us to rewrite Υ as a map

{{−,−}} : A⊗A −→ A⊗A
which turns out to be a Gerstenhaber bibracket. The assumption that the ground
ring is a field is used only in the Künneth theorem; most of the exposition is
therefore given over an arbitrary commutative ring. Moreover, our constructions
can be generalized by replacing loops based at ? with paths in M having both
endpoints in ∂M . This leads us to a notion of a path homology category of M and
an extension of the intersection bibracket to this category.

Given a smooth oriented manifoldW with ∂W = ∅, we can remove a small open
ball from W and obtain thus a manifold with boundary. The intersection bibracket
in its Pontryagin algebra and the induced Gerstenhaber brackets are invariants
of W . Under further assumptions on W , we obtain an H0-Poisson structure [Cb]
on the Pontryagin algebra of W itself.

This work suggests a number of questions. So far, we do not have a general
method allowing to compute the face homology, and we do not know whether the
face homology carries more information than the singular homology. Other ques-
tions concern the intersection bibracket. Is it sensitive to the smooth structure of
the manifold? Can it be generalized to PL-manifolds or to topological manifolds? Is
it homotopy invariant and can it be defined in homotopy-theoretic terms (cf. [CJ])?
Note that the technique of face homology allows one to define all the Chas–Sullivan
operations [CS1]. It would be useful to formally identify the resulting geometric
operations with those in [CJ]. Also, it would be interesting to provide algebraic
models for the intersection bibracket. For instance, we do not know how our geo-
metric constructions are related to the cobar constructions of [BCER] applied to
the Poincaré duality model of [LS], see [BCER, Section 5.5].

Organization of the memoir. Chapters 1 and 2 are purely algebraic: in Chap-
ter 1 we define representation algebras and discuss brackets and bibrackets; in
Chapter 2 we discuss bibrackets in unital algebras and categories, and we also
consider Hamiltonian reduction in this context. Chapter 3 introduces the face ho-
mology. In Chapter 4 we study transversality of polychains and define intersection
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operations in the homology of path spaces. In Chapters 5 and 6 we construct the
intersection bibracket and discuss its properties.

Acknowledgements. Part of this work was done while G. Massuyeau visited
Bloomington, Indiana in spring 2013; he would like to thank Indiana University
for hospitality and support. The work of V. Turaev on this memoir was partially
supported by the NSF grants DMS-1202335 and DMS-1664358. The authors would
like to thank F. Eshmatov for an explanation of the paper [BCER].

Conventions. Throughout the memoir, the letter K denotes a commutative ring
which serves as the ground ring of all modules and algebras. Thus, by a module
(respectively, an algebra, a linear map) we mean a K-module (respectively, a K-
algebra, a K-linear map). By the singular homology of a topological space we mean
singular homology with coefficients in K.

Given a smooth oriented manifold M and a smooth orientable submanifold
N ⊂M , an orientation of the normal bundle of N in M determines an orientation
of N , and vice versa, via the following rule: a positive frame in the normal bundle
of N followed by a positive frame in the tangent bundle of N is a positive frame
in the tangent bundle of M . If ∂M 6= ∅, then the orientation of M induces an
orientation of ∂M using the “outward vector first” rule.





CHAPTER 1

Algebras, brackets, and bibrackets

1.1. Algebras and brackets

We start by recalling some standard terminology.

1.1.1. Graded modules and graded algebras. By a graded module we
mean a Z-graded module A = ⊕p∈ZAp (over K). An element a of A is homogeneous
if a ∈ Ap for some p; we write then |a| = p and call |a| the degree of a. By definition,
the degree of 0 ∈ A is an arbitrary integer. For any d ∈ Z, the d-degree |a|d of a
homogeneous element a ∈ A is |a|d = |a|+ d.

A graded algebra is a graded module A endowed with an associative bilinear
multiplication such that ApAq ⊂ Ap+q for all p, q ∈ Z. Note that if the product
of k ≥ 1 homogeneous elements a1, . . . , ak of A is non-zero, then the degree of
this product is equal to |a1| + · · · + |ak|. If a1 · · · ak = 0, then we set |a1 · · · ak| =
|a1|+ · · ·+ |ak|. Similarly, for d ∈ Z, we write |a1 · · · ak|d for |a1|+ · · ·+ |ak|+ d.

We do not require a graded algebra A to have a unit element. If ab = (−1)|a||b|ba
for some homogeneous a, b ∈ A, then one says that a and b commute. For a graded
algebra A, we denote by [A,A] the graded submodule of A spanned by the vectors
ab − (−1)|a||b|ba where a, b run over all homogeneous elements of A. The graded
algebra A is commutative if [A,A] = 0. Factoring any graded algebra A by the
2-sided ideal generated by [A,A] we obtain a commutative graded algebra Com(A).

Given graded algebras A and B, a graded algebra homomorphism A → B is a
degree-preserving algebra homomorphism from A to B.

We will consider any Z≥0-graded module A = ⊕p≥0A
p as a Z-graded module

by setting Ap = 0 for all p < 0.

1.1.2. Representation algebras. Each graded algebra A determines an infi-
nite sequence of graded algebras Ã1, Ã2, . . . as follows, cf. [LbW, Cb, VdB]. The

graded algebra ÃN with N ≥ 1 is defined by the generators aij , where a runs over
all elements of A and i, j run over {1, 2, . . . , N}, and the following relations: for all
a, b ∈ A, k ∈ K, and i, j ∈ {1, 2, . . . , N},

(1.1.1) (ka)ij = kaij , (a+ b)ij = aij + bij , (ab)ij = ailblj .

In the latter formula and in the sequel we always sum up over repeating indices
and drop the summation sign. A typical element of ÃN is represented by a non-
commutative polynomial in the generators with zero free term. The grading in ÃN
is defined by |aij | = p for all a ∈ Ap.

The construction of ÃN is functorial: a graded algebra homomorphism f :
A→ A′ induces a graded algebra homomorphism f̃N : ÃN → Ã′N by f̃N (aij) =

(f(a))ij for all a ∈ A, i, j ∈ {1, . . . , N}. For N = 1 we have Ã1 = A and f̃1 = f .

9
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The importance of ÃN is due to the following fact. For any graded algebra B,
let MatN (B) be the graded algebra of (N×N)-matrices with entries in B. (A matrix
has a grading p ∈ Z whenever all its entries belong to Bp.) Then there is a canonical
bijection

(1.1.2) HomGA

(
ÃN , B

) '−→ HomGA(A,MatN (B))

which is natural in A and B. Here GA stands for the category of graded algebras
and graded algebra homomorphisms. The bijection (1.1.2) carries a graded algebra

homomorphism r : ÃN → B to the map A → MatN (B) sending any a ∈ A
to the (N × N)-matrix (r(aij))i,j . The inverse bijection carries a graded algebra

homomorphism s : A→ MatN (B) to the graded algebra homomorphism ÃN → B
sending a generator aij to the (i, j)-th term of the matrix s(a) for all a ∈ A.

Consequently, the endofunctor A 7→ ÃN of GA is left adjoint to the endofunctor
B 7→ MatN (B) of GA.

The commutative graded algebra AN = Com(ÃN ) is obtained from ÃN by
adding the relations aijbkl = (−1)|a||b|bklaij for any homogeneous a, b ∈ A and
any i, j, k, l ∈ {1, . . . , N}. We call AN the N -th representation algebra of A. The
construction of AN is functorial: a morphism f : A→ A′ in GA induces a morphism
f̃N : ÃN → Ã′N in GA, which in its turn induces a morphism fN : AN → A′N in
the category of commutative graded algebras CGA. For any commutative graded
algebra B,

HomCGA(AN , B) ' HomGA(ÃN , B) ' HomGA(A,MatN (B)).

Consequently, the functor GA → CGA, A 7→ AN is left adjoint to the functor
CGA→ GA, B 7→ MatN (B).

1.1.3. Brackets. Let A be a graded module and d ∈ Z. By a bracket in A
we mean a linear map {−,−} : A ⊗ A → A. A bracket {−,−} in A has degree d
if {Ap, Aq} ⊂ Ap+q+d for all p, q ∈ Z. A bracket {−,−} in A is d-antisymmetric if
for all homogeneous a, b ∈ A,

(1.1.3) {a, b} = −(−1)|a|d|b|d {b, a} .
A bracket {−,−} in A satisfies the d-graded Jacobi identity if

(1.1.4) (−1)|a|d|c|d {a, {b, c}}+ (−1)|b|d|a|d {b, {c, a}}+ (−1)|c|d|b|d {c, {a, b}} = 0

for all homogeneous a, b, c ∈ A. A degree d bracket {−,−} in A satisfying (1.1.3)
and (1.1.4) is called a d-graded Lie bracket, and the pair (A, {−,−}) is called then
a d-graded Lie algebra.

For example, any graded algebra A gives rise to a 0-graded Lie algebra of
derivations in A. Recall that a derivation in A of degree k ∈ Z is a linear map
δ : A→ A such that δ(Ap) ⊂ Ap+k for any p ∈ Z and δ(ab) = δ(a)b+ (−1)k|a|aδ(b)
for any homogeneous a ∈ A and any b ∈ A. Derivations of A of degree k form a
module Derk(A). The graded module Der(A) = ⊕k∈Z Derk(A) carries a 0-graded
Lie bracket defined by [δ1, δ2] = δ1δ2 − (−1)k1k2δ2δ1 for any derivations δ1 and δ2
of A of degrees k1 and k2 respectively.

A bracket {−,−} in a graded algebra A satisfies the d-graded Leibniz rules if
for all homogeneous a, b, c ∈ A,

{a, bc} = {a, b} c+ (−1)|a|d|b|b {a, c} ,(1.1.5)

{ab, c} = a {b, c}+ (−1)|b||c|d {a, c} b.(1.1.6)
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A Gerstenhaber bracket of degree d ∈ Z in a graded algebra A is a d-graded Lie
bracket {−,−} in A which satisfies the d-graded Leibniz rules. The pair (A, {−,−})
is called then a Gerstenhaber algebra of degree d. For example, any graded alge-
bra A is a Gerstenhaber algebra of degree 0 with respect to the bracket (called the
commutator) defined by {a, b} = ab − (−1)|a||b|ba for homogeneous a, b ∈ A and
extended to all a, b ∈ A by linearity.

1.2. Bibrackets

The rest of this chapter presents an extension of Van den Bergh’s [VdB] theory
of double brackets in algebras to graded algebras. Such an extension is outlined in
[VdB, Section 2.7] in the case of degree −1. Fix throughout this section a graded
algebra A and an integer d.

1.2.1. Conventions. Any x ∈ A⊗2 = A⊗A expands as a sum x =
∑
α x
′
α⊗x′′α

where x′α, x
′′
α are homogeneous elements of A and the index α runs over a finite set.

To simplify notation, we will drop the summation sign and the index and write
simply x = x′ ⊗ x′′. Similarly, an element x of A⊗3 = A⊗A⊗A will be written as
x′ ⊗ x′′ ⊗ x′′′ with homogeneous x′, x′′, x′′′ ∈ A.

Unless explicitly stated otherwise, we endow A⊗2 with the “outer” A-bimodule
structure defined by axb = ax′ ⊗ x′′b for any a, b ∈ A and x ∈ A⊗2. We shall also
use the “inner” A-bimodule structure on A⊗2 defined by

(1.2.1) a ∗ x ∗ b = (−1)|a||b|+|a||x
′|+|b||x′′| x′b⊗ ax′′

for homogeneous a, b ∈ A and any x ∈ A⊗2.
Given a permutation (i1, . . . , in) of (1, . . . , n) with n ≥ 1, we denote by Pi1···in

the graded permutation A⊗n → A⊗n carrying any a1 ⊗ · · · ⊗ an with homogeneous
a1, . . . , an ∈ A to (−1)tai1 ⊗ ai2 ⊗ · · · ⊗ ain where t ∈ Z is the sum of the products
|aik ||ail | over all pairs of indices k < l such that ik > il. For any d ∈ Z, we
similarly define the d-graded permutation Pi1···in,d : A⊗n → A⊗n using the d-degree
|−|d = |−|+ d instead of |−|.

1.2.2. Bibrackets in A. A bibracket in A is a linear map

{{−,−}} : A⊗A −→ A⊗A.
A bibracket {{−,−}} in A has degree d if for any integers p, q,

{{Ap, Aq}} ⊂
⊕

i+j=p+q+d

Ai ⊗Aj .

A d-graded bibracket in A is a bibracket {{−,−}} in A of degree d satisfying the
following d-graded Leibniz rules: for all homogeneous a, b, c ∈ A,

{{a, bc}} = {{a, b}} c+ (−1)|a|d|b|b {{a, c}} ,(1.2.2)

{{ab, c}} = a ∗ {{b, c}}+ (−1)|b||c|d {{a, c}} ∗ b.(1.2.3)

The following key lemma shows that a d-graded bibracket in A induces brackets
of degree d in all representation algebras {AN}N .

Lemma 1.2.1. Given a d-graded bibracket {{−,−}} in A and an integer N ≥ 1,
there is a unique bracket {−,−} in AN satisfying the d-graded Leibniz rules (1.1.5),
(1.1.6) and such that

(1.2.4) {aij , buv} = {{a, b}}′uj {{a, b}}
′′
iv
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for all a, b ∈ A and i, j, u, v ∈ {1, . . . , N}. The bracket {−,−} has degree d.

Proof. We extend (1.2.4) to a bilinear form {−,−} : AN × AN → AN satis-
fying (1.1.5) and (1.1.6). To see that this form is well-defined, we need to verify
the compatibility with the defining relations of AN . That the right-hand side of
(1.2.4) is linear in a and b follows from the linearity of {{−,−}}. We now verify the
compatibility with the third relation in (1.1.1). Pick any homogeneous a, b, c ∈ A
and set x = {{a, b}} and y = {{a, c}}. Then

{{a, bc}} = xc+ (−1)|a|d|b|by = x′ ⊗ x′′c+ (−1)|a|d|b|by′ ⊗ y′′.
Therefore, for any i, j, u, v ∈ {1, 2, . . . , N},

{aij , (bc)uv} = {{a, bc}}′uj{{a, bc}}
′′
iv

= x′uj(x
′′c)iv + (−1)|a|d|b|(by′)ujy

′′
iv

= x′ujx
′′
ilclv + (−1)|a|d|b|buly

′
ljy
′′
iv

= {aij , bul} clv + (−1)|a|d|b|bul {aij , clv} = {aij , bulclv} .
To check that {(ab)ij , cuv} = {ailblj , cuv}, set z = {{a, c}} and t = {{b, c}}. Then

{{ab, c}} = a ∗ t+ (−1)|b||c|dz ∗ b = (−1)|t
′||a|t′ ⊗ at′′ + (−1)|b||cz

′′|dz′b⊗ z′′.
Therefore

{(ab)ij , cuv} = {{ab, c}}′uj{{ab, c}}
′′
iv

= (−1)|t
′||a|t′uj(at

′′)iv + (−1)|b||cz
′′|d(z′b)ujz

′′
iv

= (−1)|t
′||a|t′ujailt

′′
lv + (−1)|b||cz

′′|dz′ulbljz
′′
iv

= ailt
′
ujt
′′
lv + (−1)|b||c|dz′ulz

′′
ivblj

= ail {blj , cuv}+ (−1)|b||c|d {ail, cuv} blj = {ailblj , cuv} .
The last claim of the lemma follows from the definitions. �

1.2.3. Antisymmetric bibrackets. Consider the linear involutions P21 and
P21,d of A⊗2 determined by the permutation (21) as in Section 1.2.1: for homoge-
neous a, b ∈ A, we have

P21(a⊗ b) = (−1)|a||b|b⊗ a and P21,d(a⊗ b) = (−1)|a|d|b|db⊗ a.
Given f ∈ End(A⊗2), the d-transpose of f is fd = P21fP21,d ∈ End(A⊗2).

Lemma 1.2.2. A bibracket {{−,−}} satisfies (1.2.2) if and only if its d-transpose
{{−,−}}d satisfies (1.2.3).

Proof. Assume that a bibracket {{−,−}} in A satifies (1.2.2). Pick homoge-
neous a, b, c ∈ A and set x = {{c, a}}, y = {{c, b}}. Then

{{ab, c}}d = (−1)|ab|d|c|dP21({{c, ab}})
= (−1)|ab|d|c|dP21({{c, a}} b+ (−1)|c|d|a|a {{c, b}})
= (−1)|ab|d|c|dP21(x′ ⊗ x′′b+ (−1)|c|d|a|ay′ ⊗ y′′)
= (−1)|ab|d|c|d+|x′||x′′b|x′′b⊗ x′ + (−1)|b|d|c|d+|ay′||y′′|y′′ ⊗ ay′

= (−1)|ab|d|c|dP21({{c, a}}) ∗ b+ (−1)|b|d|c|da ∗ P21({{c, b}})
= (−1)|b||c|d {{a, c}}d ∗ b+ a ∗ {{b, c}}d .
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So, {{−,−}}d satifies (1.2.3). The converse is shown by a similar computation. �

A bibracket {{−,−}} in A is d-antisymmetric if {{−,−}}d = −{{−,−}}. By
Lemma 1.2.2, a d-antisymmetric bibracket satisfies (1.2.2) if and only if it satisfies
(1.2.3). Note for the record, that given a d-antisymmetric bibracket {{−,−}} in A,
we have for any homogeneous a, b ∈ A,

(1.2.5) {{b, a}} = −(−1)|a|d|b|d+|{{a,b}}′||{{a,b}}′′| {{a, b}}′′ ⊗ {{a, b}}′ .

Lemma 1.2.3. If in Lemma 1.2.1 the bibracket {{−,−}} is d-antisymmetric,
then the induced bracket {−,−} in AN is d-antisymmetric, i.e., satisfies (1.1.3).

Proof. Pick any homogeneous a, b ∈ A and set x = {{a, b}}. Then

{buv, aij}
(1.2.5)

= −(−1)|a|d|b|d+|x′||x′′| x′′ivx
′
uj

= −(−1)|a|d|b|d x′ujx
′′
iv = −(−1)|a|d|b|d {aij , buv} . �

1.2.4. The Jacobi identity. The bracket in AN constructed in Lemma 1.2.1
may not satisfy the d-graded Jacobi identity (1.1.4). To compute the deviation
from this identity, we observe that any bibracket {{−,−}} in A induces a linear
endomorphism {{−,−,−}} of A⊗3, called the induced tribracket, by

(1.2.6) {{−,−,−}} =

2∑
i=0

Pi312({{−,−}} ⊗ idA)(idA⊗{{−,−}})P−i312,d

where P312,P312,d ∈ End(A⊗3) are as defined in Section 1.2.1.

Lemma 1.2.4. Let N ≥ 1. If {{−,−}} is a d-antisymmetric d-graded bibracket
in A, then the associated bracket {−,−} in AN satisfies

{apq, {brs, cuv}}+ (−1)|a|d|bc| {brs, {cuv, apq}}+ (−1)|ab||c|d {cuv, {apq, brs}}
= {{a, b, c}}′uq{{a, b, c}}

′′
ps{{a, b, c}}

′′′
rv − (−1)|b|d|c|d{{a, c, b}}′rq{{a, c, b}}

′′
pv{{a, c, b}}

′′′
us

for any homogeneous a, b, c ∈ A, any p, q, r, s, u, v ∈ {1, . . . , N}.

Proof. It follows from the definitions that

{{a, b, c}} =
{{
a, {{b, c}}′

}}
⊗ {{b, c}}′′ + (−1)|a|d|bc|P312

({{
b, {{c, a}}′

}}
⊗ {{c, a}}′′

)
+(−1)|ab||c|dP2

312

({{
c, {{a, b}}′

}}
⊗ {{a, b}}′′

)
=

{{
a, {{b, c}}′

}}′ ⊗ {{a, {{b, c}}′}}′′ ⊗ {{b, c}}′′
+(−1)|a|d|bc|P312

({{
b, {{c, a}}′

}}′ ⊗ {{b, {{c, a}}′}}′′ ⊗ {{c, a}}′′)
+(−1)|ab||c|dP2

312

({{
c, {{a, b}}′

}}′ ⊗ {{c, {{a, b}}′}}′′ ⊗ {{a, b}}′′) .
Using the commutativity of AN , we deduce that

{{a, b, c}}′uq{{a, b, c}}
′′
ps{{a, b, c}}

′′′
rv(1.2.7)

=
{{
a, {{b, c}}′

}}′
uq

{{
a, {{b, c}}′

}}′′
ps
{{b, c}}′′rv

+(−1)|a|d|bc|
{{
b, {{c, a}}′

}}′
ps

{{
b, {{c, a}}′

}}′′
rv
{{c, a}}′′uq

+(−1)|ab||c|d
{{
c, {{a, b}}′

}}′
rv

{{
c, {{a, b}}′

}}′′
uq
{{a, b}}′′ps .
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Applying the transpositions b↔ c, r ↔ u, and s↔ v, we obtain

{{a, c, b}}′rq{{a, c, b}}
′′
pv{{a, c, b}}

′′′
us(1.2.8)

=
{{
a, {{c, b}}′

}}′
rq

{{
a, {{c, b}}′

}}′′
pv
{{c, b}}′′us

+(−1)|a|d|cb|
{{
c, {{b, a}}′

}}′
pv

{{
c, {{b, a}}′

}}′′
us
{{b, a}}′′rq

+(−1)|ac||b|d
{{
b, {{a, c}}′

}}′
us

{{
b, {{a, c}}′

}}′′
rq
{{a, c}}′′pv .

Equalities (1.2.7) and (1.2.8) allow us to expand the right-hand side of the formula
claimed in the lemma. We next expand the left-hand side of this formula. Set
x = {{b, c}} ∈ A⊗2 and observe that

{apq, {brs, cuv}} = {apq, x′usx′′rv}
= {apq, x′us}x′′rv + (−1)|a|d|x

′|x′us {apq, x′′rv}
= {{a, x′}}′uq {{a, x

′}}′′ps x
′′
rv + (−1)|a|d|x

′|x′us {{a, x′′}}
′
rq {{a, x

′′}}′′pv .

We rewrite the second summand as follows. Since {{−,−}} has degree d,

| {{a, x′′}}′rq {{a, x
′′}}′′pv | = | {{a, x

′′}}′ {{a, x′′}}′′ | = |a|+ |x′′|+ d = |a|d + |x′′|.
The commutativity of AN implies that

(−1)|a|d|x
′|x′us {{a, x′′}}

′
rq {{a, x

′′}}′′pv = (−1)|x
′||x′′| {{a, x′′}}′rq {{a, x

′′}}′′pv x
′
us.

The d-antisymmetry of {{−,−}} allows us to compute x = {{b, c}} from y = {{c, b}}:
by (1.2.5), we have x′ ⊗ x′′ = −(−1)|b|d|c|d+|y′||y′′|y′′ ⊗ y′. Hence,

(−1)|x
′||x′′| {{a, x′′}}′rq {{a, x

′′}}′′pv x
′
us = −(−1)|b|d|c|d {{a, y′}}′rq {{a, y

′}}′′pv y
′′
us.

As a result, we obtain that

{apq, {brs, cuv}} =
{{
a, {{b, c}}′

}}′
uq

{{
a, {{b, c}}′

}}′′
ps
{{b, c}}′′rv

−(−1)|b|d|c|d
{{
a, {{c, b}}′

}}′
rq

{{
a, {{c, b}}′

}}′′
pv
{{c, b}}′′us .(1.2.9)

Cyclically permuting a, b, c and the indices, we obtain

{brs, {cuv, apq}} =
{{
b, {{c, a}}′

}}′
ps

{{
b, {{c, a}}′

}}′′
rv
{{c, a}}′′uq

−(−1)|c|d|a|d
{{
b, {{a, c}}′

}}′
us

{{
b, {{a, c}}′

}}′′
rq
{{a, c}}′′pv(1.2.10)

and

{cuv, {apq, brs}} =
{{
c, {{a, b}}′

}}′
rv

{{
c, {{a, b}}′

}}′′
uq
{{a, b}}′′ps

−(−1)|a|d|b|d
{{
c, {{b, a}}′

}}′
pv

{{
c, {{b, a}}′

}}′′
us
{{b, a}}′′rq .(1.2.11)

The required formula directly follows from the equalities (1.2.7)–(1.2.11). �

1.2.5. Gerstenhaber bibrackets. A Gerstenhaber bibracket of degree d in A
is a d-antisymmetric d-graded bibracket {{−,−}} in A such that the induced tri-
bracket (1.2.6) is equal to zero. The pair (A, {{−,−}}) is called then a double
Gerstenhaber algebra of degree d. This structure was first introduced by Van den
Bergh [VdB, Section 2.7] for d = −1; see also [BCER] in the setting of differential
graded algebras.

Lemma 1.2.5. For any Gerstenhaber bibracket of degree d in A and N ≥ 1, the
bracket {−,−} in AN given by Lemma 1.2.1 is a Gerstenhaber bracket of degree d.
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Proof. This follows from Lemmas 1.2.1, 1.2.3, and 1.2.4. The equality

{apq, {brs, cuv}}+ (−1)|a|d|bc| {brs, {cuv, apq}}+ (−1)|ab||c|d {cuv, {apq, brs}} = 0

provided by Lemma 1.2.4 implies the d-graded Jacobi identity (1.1.4) in which a, b, c
are replaced with apq, brs, cuv, respectively. �

1.3. Equivariance

We show that the bracket constructed in Lemma 1.2.1 is equivariant under the
natural actions of the general linear group and the Lie algebra of matrices on the
representation algebra. We begin with terminology.

1.3.1. Lie pairs. By a Lie pair we mean a pair (G, g) where G is a group
and g is a (non-graded) Lie algebra endowed with a (left) action of G on g by Lie
algebra automorphisms. The action is denoted by w 7→ gw for w ∈ g and g ∈ G.

Given a Lie pair (G, g), by a (G, g)-algebra we mean a graded algebra A endowed
with an action of G and an action of g such that gw a = g w(g−1a) for all g ∈ G,
w ∈ g, a ∈ A. Here an action of G on A is a group homomorphism from G to
the group of graded algebra automorphisms of A, and an action of g on A is a Lie
algebra homomorphism from g to the Lie algebra of derivations of A of degree zero,
cf. Section 1.1.3.

1.3.2. Action on the representation algebras. Fix an integer N ≥ 1. Let
GN = GLN (K) be the N -th general linear group over K and let gN = MatN (K)
be the Lie algebra of (N × N)-matrices with Lie bracket [u, v] = uv − vu. The
pair (GN , gN ) is a Lie pair where GN acts on gN by gw = gwg−1 for any g ∈ GN ,

w ∈ gN . The representation algebra ÃN associated with a graded algebra A in
Section 1.1.2 is a (GN , gN )-algebra. Here GN acts on ÃN as follows: for a matrix

g = (gk,l)
N
k,l=1 ∈ GN and a generator aij ∈ ÃN , set

(1.3.1) gaij = (g−1)i,k gl,j akl.

In this formula, the numerical coefficients appear to the left of the generator akl.
It is easier to remember (1.3.1) in the equivalent form gaij = (g−1)i,k akl gl,j , and
we will use the latter form. Direct computations show that these formulas are
compatible with the relations in ÃN and define an action of GN on ÃN . We verify
the compatibility with the relation (ab)ij = ailblj :

g(ab)ij = (g−1)i,k (ab)kl gl,j = (g−1)i,k akpbpl gl,j

= (g−1)i,k akpδpqbql gl,j = (g−1)i,k akpgp,r(g
−1)r,qbql gl,j = (gair)(gbrj).

The Lie algebra gN acts on ÃN as follows: for a matrix w = (wk,l)
N
k,l=1 ∈ gN and

a generator aij ∈ ÃN , set

(1.3.2) waij = aikwk,j − wi,kakj .

This formula is compatible with the relations in ÃN and defines an action of gN
on ÃN . We verify the compatibility with the relation (ab)ij = ailblj :

w(ailblj) = w(ail)blj + ailw(blj)

= aikwk,lblj − wi,kaklblj + ailblkwk,j − ailwl,kbkj
= ailblkwk,j − wi,kaklblj = (ab)ikwk,j − wi,k(ab)kj = w(ab)ij .



16 1. ALGEBRAS, BRACKETS, AND BIBRACKETS

It is easy to check that these actions turn ÃN into a (GN , gN )-algebra. Moreover,

these actions descend to the commutative graded algebra AN = Com(ÃN ) and turn
it into a (GN , gN )-algebra.

The next lemma shows that the bracket in AN provided by Lemma 1.2.1 is
equivariant under the actions of GN and gN .

Lemma 1.3.1. Let {{−,−}} be a d-graded bibracket in a graded algebra A. For
any N ≥ 1, the bracket {−,−} in AN defined in Lemma 1.2.1 satisfies

(1.3.3) g {a, b} = {ga, gb} and w {a, b} = {wa, b}+ {a,wb}

for all g ∈ GN , w ∈ gN and a, b ∈ AN .

Proof. Pick g = (gk,l)k,l ∈ GN . It is easy to see that if the identity g {x, y} =
{gx, gy} holds for all the generators of AN , then it holds for any x, y ∈ AN . Given
a, b ∈ A and i, j, u, v ∈ {1, . . . , N},

{gaij , gbuv} =
{

(g−1)i,kaklgl,j , (g
−1)u,sbstgt,v

}
= (g−1)i,kgl,j(g

−1)u,sgt,v {akl, bst}
= (g−1)i,kgl,j(g

−1)u,sgt,v {{a, b}}′sl {{a, b}}
′′
kt

= (g−1)u,s {{a, b}}′sl gl,j (g−1)i,k {{a, b}}′′kt gt,v
= (g {{a, b}}′uj)(g {{a, b}}

′′
iv) = g({{a, b}}′uj {{a, b}}

′′
iv) = g {aij , buv} .

Similarly, given w = (wk,l)k,l ∈ gN , it is enough to check the identity w {x, y} =
{wx, y}+ {x,wy} for the generators of AN . For a, b ∈ A and i, j, u, v ∈ {1, . . . , N},

w {aij , buv} = w({{a, b}}′uj {{a, b}}
′′
iv)

= w({{a, b}}′uj) {{a, b}}
′′
iv + {{a, b}}′uj w({{a, b}}′′iv)

= {{a, b}}′uk wk,j {{a, b}}
′′
iv − wu,k {{a, b}}

′
kj {{a, b}}

′′
iv

+ {{a, b}}′uj {{a, b}}
′′
ik wk,v − {{a, b}}

′
uj wi,k {{a, b}}

′′
kv

= wk,j {aik, buv} − wu,k {aij , bkv}+ wk,v {aij , buk} − wi,k {akj , buv}
= {aikwk,j − wi,kakj , buv}+ {aij , bukwk,v − wu,kbkv}
= {waij , buv}+ {aij , wbuv} . �

1.4. The associated pairing and the trace

We study the pairing A⊗A→ A induced by a bibracket in a graded algebra A
and, in particular, discuss its behavior under the trace maps.

1.4.1. The pairing 〈−,−〉. A bibracket {{−,−}} in a graded algebraA induces
an associated pairing 〈−,−〉 : A⊗A→ A by

〈a, b〉 = {{a, b}}′{{a, b}}′′ ∈ A for a, b ∈ A.

Lemma 1.4.1. Let {{−,−}} be a d-antisymmetric d-graded bibracket in A. Then
the associated pairing 〈−,−〉 has the following properties:

(i) 〈−,−〉 has degree d and satisfies the d-graded Leibniz rule (1.1.5),
(ii) 〈a, b〉 ≡ −(−1)|a|d|b|d〈b, a〉 (mod [A,A]) for all homogeneous a, b ∈ A,
(iii) 〈[A,A], A〉 = 0 and 〈A, [A,A]〉 ⊂ [A,A],
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(iv) for any homogeneous a, b, c ∈ A,

〈〈a, b〉, c〉 − 〈a, 〈b, c〉〉+ (−1)|a|d|b|d〈b, 〈a, c〉〉
= m

(
(−1)|a|d|b|d {{b, a, c}} − {{a, b, c}}

)
where m ∈ Hom(A⊗3, A) carries x⊗ y ⊗ z to xyz for all x, y, z ∈ A.

Proof. Claim (i) is straightforward. To check (ii), set z = {{a, b}}. Then

{{b, a}} = −(−1)|a|d|b|d+|z′||z′′|z′′ ⊗ z′ by (1.2.5) and, modulo [A,A],

〈b, a〉 = −(−1)|a|d|b|d+|z′||z′′|z′′z′ ≡ −(−1)|a|d|b|dz′z′′ = −(−1)|a|d|b|d〈a, b〉.
To check (iii), pick any homogeneous a, b, c ∈ A and set x = {{a, c}}, y = {{b, c}}.

We have

{{ab, c}} = a ∗ {{b, c}}+ (−1)|b||c|d {{a, c}} ∗ b
= (−1)|a||y

′|y′ ⊗ ay′′ + (−1)|b||cx
′′|dx′b⊗ x′′

so that

〈ab, c〉 = {{ab, c}}′{{ab, c}}′′ = (−1)|a||y
′|y′ay′′ + (−1)|b||cx

′′|dx′bx′′.

Transposing a and b, we also obtain

〈ba, c〉 = (−1)|b||x
′|x′bx′′ + (−1)|a||cy

′′|dy′ay′′.

Since {{−,−}} has degree d, we have |cx′′|d ≡ |ax′| (mod 2) and |cy′′|d ≡ |by′| (mod 2).
Therefore 〈ab, c〉 = (−1)|a||b|〈ba, c〉. Hence 〈[A,A], A〉 = 0. This equality together
with (ii) imply the inclusion 〈A, [A,A]〉 ⊂ [A,A].

We now prove (iv). Set x = {{b, c}}, y = {{a, c}}, ỹ = {{c, a}}, z = {{a, b}}, and
z̃ = {{b, a}}. Then

{{z′z′′, c}} = z′ ∗ {{z′′, c}}+ (−1)|z
′′||c|d {{z′, c}} ∗ z′′

= (−1)|z
′| |{{z′′,c}}′| {{z′′, c}}′ ⊗ z′ {{z′′, c}}′′

+(−1)|z
′′| |c{{z′,c}}′′|

d {{z′, c}}′ z′′ ⊗ {{z′, c}}′′ .
We deduce that

〈〈a, b〉, c〉 = 〈z′z′′, c〉 = (−1)|z
′| |{{z′′,c}}′| {{z′′, c}}′ z′ {{z′′, c}}′′(1.4.1)

+(−1)|z
′′| |c{{z′,c}}′′|

d {{z′, c}}′ z′′ {{z′, c}}′′ .
By (i), we have

〈a, 〈b, c〉〉 = 〈a, x′x′′〉 = 〈a, x′〉x′′ + (−1)|a|d|x
′|x′〈a, x′′〉(1.4.2)

and

〈b, 〈a, c〉〉 = 〈b, y′y′′〉 = 〈b, y′〉y′′ + (−1)|b|d|y
′|y′〈b, y′′〉.(1.4.3)

By the definition of the tribracket (1.2.6),

{{a, b, c}} = {{a, x′}} ⊗ x′′ + (−1)|a|d|bc|P312 ({{b, ỹ′}} ⊗ ỹ′′)
+(−1)|ab||c|dP2

312 ({{c, z′}} ⊗ z′′)

= {{a, x′}} ⊗ x′′ + (−1)|a|d|bc|P312

(
{{b, ỹ′}}′ ⊗ {{b, ỹ′}}′′ ⊗ ỹ′′

)
+(−1)|ab||c|dP2

312

(
{{c, z′}}′ ⊗ {{c, z′}}′′ ⊗ z′′

)
= {{a, x′}}′ ⊗ {{a, x′}}′′ ⊗ x′′
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+(−1)|a|d|bc|+|bỹ
′|d|ỹ′′|ỹ′′ ⊗ {{b, ỹ′}}′ ⊗ {{b, ỹ′}}′′

+(−1)|ab||c|d+|{{c,z′}}′| |{{c,z′}}′′z′′| {{c, z′}}′′ ⊗ z′′ ⊗ {{c, z′}}′

(1.2.5)
= {{a, x′}}′ ⊗ {{a, x′}}′′ ⊗ x′′

−(−1)|a|d|bc|+|b|d|y
′|+|a|d|c|dy′ ⊗ {{b, y′′}}′ ⊗ {{b, y′′}}′′

−(−1)|ab||c|d+|{{z′,c}}′′| |z′′|+|c|d|z′|d {{z′, c}}′ ⊗ z′′ ⊗ {{z′, c}}′′ .
Therefore

m {{a, b, c}} = 〈a, x′〉x′′ − (−1)|a|d|b|d+|b|d|y′|y′〈b, y′′〉

−(−1)|c{{z
′,c}}′′|

d
|z′′| {{z′, c}}′ z′′ {{z′, c}}′′ .(1.4.4)

Transposing a↔ b, we obtain

m {{b, a, c}} = 〈b, y′〉y′′ − (−1)|a|d|b|d+|a|d|x′|x′〈a, x′′〉

−(−1)|c{{z̃
′,c}}′′|

d
|z̃′′| {{z̃′, c}}′ z̃′′ {{z̃′, c}}′′

(1.2.5)
= 〈b, y′〉y′′ − (−1)|a|d|b|d+|a|d|x′|x′〈a, x′′〉(1.4.5)

+(−1)|{{z
′′,c}}′| |z′|+|a|d|b|d {{z′′, c}}′ z′ {{z′′, c}}′′ .

Then (iv) follows from (1.4.1)–(1.4.5). �

1.4.2. The trace. For a graded algebra A, consider the module Ǎ = A/[A,A]
with the grading induced by that of A. Lemma 1.4.1 implies that the pairing
〈−,−〉 : A ⊗ A → A associated with {{−,−}} induces a pairing Ǎ ⊗ Ǎ → Ǎ. The
latter pairing is also denoted by 〈−,−〉. It has degree d and is d-antisymmetric. If
the induced tribracket of {{−,−}} is zero, then 〈−,−〉 is a d-graded Lie bracket.

Note that for any N ≥ 1, the formula tr(a) =
∑N
i=1 aii defines a linear map

tr : A→ AN . Clearly, tr([A,A]) = 0 so that tr induces a linear map Ǎ→ AN . This
map is also denoted by tr and is called the trace. The graded subalgebra of AN
generated by tr(Ǎ) ⊂ AN is denoted AtN and is called the N -th trace algebra of A.

We have AtN ⊂ A
GN
N where AGNN is the subalgebra of AN consisting of the elements

invariant under the action of GN = GLN (K). When A is finitely generated as an

algebra and K is a field of characteristic zero, AtN = AGNN , see [LbP].

Lemma 1.4.2. Under the conditions of Lemma 1.4.1, the map tr : Ǎ → AN
carries the pairing 〈−,−〉 in Ǎ into the bracket {−,−} in AN induced by {{−,−}}.
As a consequence, {AtN , AtN} ⊂ AtN for all N ≥ 1.

Proof. Pick any a, b ∈ A and let ǎ, b̌ be their projections to Ǎ. We have{
tr(ǎ), tr(b̌)

}
=

{ ∑
i

aii,
∑
j

bjj

}
=
∑
i,j

{aii, bjj}

(1.2.4)
=

∑
i,j

{{a, b}}′ji {{a, b}}
′′
ij =

∑
j

(
{{a, b}}′ {{a, b}}′′

)
jj

= tr
(
{{a, b}}′ {{a, b}}′′

)
= tr

(
〈a, b〉

)
= tr

(
〈ǎ, b̌〉

)
. �

Note that for N = 1, the trace tr : A → A1 = Com(A) is the canonical
projection and At1 = A1.



CHAPTER 2

Bibrackets in unital algebras and in categories

2.1. Bibrackets in unital algebras

We define a version of representation algebras in the unital setting.

2.1.1. Unital algebras. A graded algebra A is unital if it has a two-sided unit
1A ∈ A0. Unital graded algebras and graded algebra homomorphisms carrying 1
to 1 form a category GA+. Given a unital graded algebra A, we define a sequence of
unital graded algebras Ã+

1 , Ã
+
2 , . . . For N ≥ 1, Ã+

N is obtained from the algebra ÃN
defined in Section 1.1.2 as follows. First, we adjoin a unit to ÃN , that is consider
the unital graded algebra Ke⊕ ÃN with two-sided unit e. By definition, Ã+

N is the

quotient of Ke⊕ ÃN by the relations (1A)ij = δije where δij is the Kronecker delta

and i, j run over 1, . . . , N . For any B ∈ Ob(GA+), the bijection (1.1.2) induces a
natural bijection

(2.1.1) HomGA+

(
Ã+
N , B

)
' HomGA+

(
A,MatN (B)

)
.

Similarly, let CGA+ be the category of commutative unital graded algebras and
graded algebra homomorphisms carrying 1 to 1. Set A+

N = Com(Ã+
N ) ∈ Ob(CGA+).

Then for any B ∈ Ob(CGA+), we have a natural bijection

(2.1.2) HomCGA+

(
A+
N , B

)
' HomGA+

(
A,MatN (B)

)
.

We call A+
N the N -th unital representation algebra of A. From the viewpoint of al-

gebraic geometry, A+
N is the “coordinate algebra” of the “affine scheme” whose

set of B-points is the set of algebra homomorphisms A → MatN (B) for any
B ∈ Ob(CGA+). Here an “affine scheme” is a representable functor from CGA+

to the category of sets. The same graded algebra A+
N can be obtained from AN by

adjoining a two-sided unit e and quotienting by the relations (1A)ij = δije where

i, j run over 1, . . . , N . For N = 1, we have Ã+
1 = A and A+

1 = Com(A).

Lemma 2.1.1. Let {{−,−}} be a d-graded bibracket in a unital graded algebra A
and let {−,−} be the induced bracket in AN , see Lemma 1.2.1. Then there is

a unique bracket {−,−}+ in A+
N such that the projection AN → A+

N is bracket-

preserving. If {{−,−}} is a Gerstenhaber bibracket of degree d, then {−,−}+ is a
Gerstenhaber bracket of degree d in A+

N .

Proof. Denote the projection AN → A+
N by p. Clearly, p is onto which

implies the uniqueness of {−,−}+. To prove the existence, we extend {−,−} to a
bracket {−,−}′ in the algebra A′N = Ke ⊕ AN by {e,A′N}

′
= {A′N , e}

′
= 0. The

latter bracket is easily checked to satisfy the d-graded Leibniz rules (1.1.5), (1.1.6).
Therefore, it suffices to verify that (1A)ij − δije annhilates {−,−}′ both on the

19
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left and on the right for all i, j. The Leibniz rule (1.2.3) for {{−,−}} implies that
{{1A, A}} = 0. Therefore for any b ∈ A and u, v ∈ {1, . . . , N},

{(1A)ij − δije, buv}′ = {(1A)ij , buv} − δij {e, buv}′ = 0.

Since A′N is generated by the set {buv | b, u, v}, the d-graded Leibniz rules (1.1.5),

(1.1.6) imply that {(1A)ij − δije,A′N}
′

= 0. Similarly, {A′N , (1A)ij − δije}′ = 0.
The last claim of the lemma follows from Lemma 1.2.5. �

The constructions and results given for ÃN and AN in Sections 1.3.2 and 1.4.2
easily extend to Ã+

N and A+
N .

2.1.2. The case of universal enveloping algebras. A rich source of unital
algebras is the theory of Lie algebras since their universal enveloping algebras are
unital. In the graded setting one starts with a 0-graded Lie algebra L = (L, {−,−})
as in Section 1.1.3. The universal enveloping algebra U(L) of L is the quotient of
the graded tensor algebra ⊕n≥0 L

⊗n by the 2-sided ideal generated by the vectors

a⊗ b− (−1)|a||b|b⊗ a− {a, b}
where a, b run over all homogeneous elements of L. The graded tensor algebra is
unital and so is U(L).

For any unital graded algebra V , the composition with the natural linear map
L→ U(L) determines a bijection

(2.1.3) HomGA+(U(L), V ) ' HomLie(L, V )

where Lie is the category of 0-graded Lie algebras and, on the right hand-side, V is
viewed as a graded Lie algebra with the commutator bracket. Section 2.1.1 yields
for each N ≥ 1, a commutative unital graded algebra LN = (U(L))+

N . By (2.1.2)

and (2.1.3), for any B ∈ Ob(CGA+), we have a natural bijection

(2.1.4) HomCGA+(LN , B) ' HomLie(L,MatN (B)).

Note that LN is generated by the commuting symbols aij where a runs over ho-
mogeneous elements of L and i, j run over 1, . . . , N , subject to the first two of the
relations (1.1.1) and the relation {a, b}ij = ailblj − (−1)|a||b|bilalj for all homoge-
neous a, b ∈ L and all i, j. Lemma 2.1.1 shows how to obtain a bracket in LN from
a bibracket in U(L).

2.2. Bibrackets in categories

We define representation algebras and bibrackets for graded categories. We
follow Van den Bergh [VdB, Section 7] who did it for non-graded categories with
finite sets of objects.

2.2.1. Graded categories and associated algebras. A graded category is
a small category C such that for any objects X,Y of C, the set HomC(X,Y ) is a
graded module, the identity morphisms of all objects are homogeneous of degree
zero, and the composition of morphisms is bilinear and degree-additive. The latter
condition means that for any homogeneous f ∈ HomC(X,Y ) and g ∈ HomC(Y,Z),
the morphism g ◦ f : X → Z is homogeneous of degree |f |+ |g|.

With a graded category C we associate a graded algebra

A = A(C) =
⊕

X,Y ∈Ob(C)

HomC(X,Y )
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where ⊕ is the direct sum of graded modules. The product fg ∈ A of f ∈
HomC(X,Y ) and g ∈ HomC(U,Z) is equal to g ◦ f if Y = U and to zero oth-
erwise. For X ∈ Ob(C), the identity morphism of X represents an element of A
denoted eX . Clearly, eXeX = eX and eXeY = 0 for X 6= Y . If the set Ob(C) is
finite, then 1A =

∑
X∈Ob(C) eX is a two-sided unit of A; if the set Ob(C) is infinite,

then A is not unital.
For each integer N ≥ 1, we introduce a unital graded algebra C̃+

N . Consider

the unital graded algebra Ke ⊕ ÃN obtained by adjoining the two-sided unit e to
the graded algebra ÃN associated with A = A(C) in Section 1.1.2. Let C̃+

N be the

quotient of Ke⊕ ÃN by the 2-sided ideal generated by the set {(eX)ij − δije}X,i,j
where X runs over all objects of C and i, j ∈ {1, . . . , N}. The algebra C̃+

N has the
following universal property. For each unital graded algebra B, we consider the
algebra MatN (B) of (N × N)-matrices over B as a category with a single object.
This category is graded: a matrix is homogeneous of degree p if all its entries belong
to Bp ⊂ B. There is a natural bijection

HomGA+

(
C̃+
N , B

) '−→ Fun(C,MatN (B))

where GA+ is the category of unital graded algebras and Fun(C,MatN (B)) is the
set of degree-preserving linear functors C→ MatN (B). Note that such functors can
be interpreted as N -dimensional B-representations of C.

The commutative unital graded algebra C+
N = Com(C̃+

N ) plays a similar role in

the category CGA+ of commutative unital graded algebras: for any B ∈ Ob(CGA+),
there is a natural bijection

(2.2.1) HomCGA+

(
C+
N , B

) '−→ Fun(C,MatN (B)).

2.2.2. Double Gerstenhaber categories. Let d be an integer. A d-graded
bibracket in a graded category C is a d-graded bibracket {{−,−}} in the graded
algebra A = A(C) such that {{A, eX}} = {{eX , A}} = 0 for all X ∈ Ob(C). If such a
bibracket in A is a Gerstenhaber bibracket of degree d, then the pair (C, {{−,−}})
is called a double Gerstenhaber category of degree d.

Lemma 2.2.1. Let {{−,−}} be a d-graded bibracket in a graded category C. Then
� for any X,Y, U, V ∈ Ob(C),

{{HomC(X,Y ),HomC(U, V )}} ⊂ HomC(U, Y )⊗HomC(X,V );

� for any integer N ≥ 1, the bracket in AN determined by Lemma 1.2.1
induces a bracket {−,−} in C+

N satisfying the Leibniz rules (1.1.5), (1.1.6);
� if (C, {{−,−}}) is a double Gerstenhaber category of degree d, then the pair

(C+
N , {−,−}) is a unital Gerstenhaber algebra of degree d for all N ≥ 1.

Proof. Using the identity {{A, eX}} = {{eX , A}} = 0 and the Leibniz rules
for {{−,−}}, we obtain that for any f ∈ HomC(X,Y ), g ∈ HomC(U, V ),

{{f, g}} = {{eXfeY , eUgeV }}
= eU {{eXfeY , g}} eV
= eU (eX ∗ {{f, g}} ∗ eY ) eV

= eU
(
eX ∗ ({{f, g}}′ ⊗ {{f, g}}′′) ∗ eY

)
eV

= eU {{f, g}}′ eY ⊗ eX {{f, g}}′′ eV ∈ HomC(U, Y )⊗HomC(X,V ).

Other claims of the lemma follow from the definitions and Lemma 1.2.5. �
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We conclude that a double Gerstenhaber category (C, {{−,−}}) of degree d gives
rise to a system of unital Gerstenhaber algebras {C+

N}N≥1 of degree d. Moreover,
for any full subcategory C′ of C, the algebra A′ = A(C′) may be viewed as a subal-
gebra of A = A(C) in the obvious way. The first claim of Lemma 2.2.1 implies that
the bibracket {{−,−}} in A restricts to a bibracket in A′. In this way, C′ becomes a
double Gerstenhaber category of degree d. In particular, any object X of C deter-
mines a full subcategory CX of C consisting of X and all its endomorphisms. Then
the restriction of {{−,−}} to the unital graded algebra AX = A(CX) = EndC(X) is
a Gerstenhaber bibracket of degree d, and we have (CX)+

N = (AX)+
N .

2.2.3. Remark. In analogy with non-unital algebras, one can consider “cat-
egories without identity morphisms”. However, such generalized categories do not
appear in our geometric context and we do not study them.

2.3. Bibrackets in Hopf categories

We define Hopf categories and we introduce a class of bibrackets in Hopf cate-
gories called reducible bibrackets.

2.3.1. Hopf categories. Consider a graded category C and the associated
graded algebra A = A(C), see Section 2.2.1. For X ∈ Ob(C), we let eX ∈ A0 ⊂ A
be the element represented by the identity morphism of X. We view A ⊗ A as an
algebra with multiplication defined by

(a1 ⊗ a2)(b1 ⊗ b2) = (−1)|a2| |b1|a1b1 ⊗ a2b2

for any homogeneous a1, a2, b1, b2 ∈ A. A comultiplication in C is a degree-preserving
algebra homomorphism ∆ : A→ A⊗A such that

(∆⊗ idA)∆ = (idA⊗∆)∆,

and ∆(eX) = eX ⊗ eX for all X ∈ Ob(C). As a consequence, ∆ must carry
H = HomC(X,Y ) ⊂ A to H ⊗ H for any objects X,Y of C. The image of any

a ∈ H under ∆ expands (non-uniquely) as a sum
∑
i a

(1)
i ⊗a

(2)
i where i runs over a

finite set and a
(1)
i , a

(2)
i are homogeneous elements of H. We use Sweedler’s notation,

i.e., drop the index i and the summation sign and write simply ∆(a) = a(1) ⊗ a(2).
The condition that ∆ is degree-preserving means that |a(1)| + |a(2)| = |a| for any
homogeneous a ∈ A. That ∆ is an algebra homomorphism means the identity

∆(ab) = (−1)|a
(2)| |b(1)|a(1)b(1) ⊗ a(2)b(2)

for any homogeneous a, b ∈ A.
An augmentation of C is a linear map ε : A → K carrying the identity

morphisms of all objects to 1, carrying Ap to 0 for all p 6= 0, and satisfying
ε(fg) = ε(f) ε(g) for any morphisms f, g in C with target(f) = source(g). A
counit for a comultiplication ∆ : A → A ⊗ A is an augmentation ε : A → K of C
such that

(idA⊗ε)∆ = idA = (ε⊗ idA)∆: A→ A.

Clearly, if ε is a counit of ∆, then ∆ is a split injection with left inverses idA⊗ε
and ε⊗ idA. Also, ε induces linear maps εin, εout : A→ A such that

εin(a) = ε(a)eX and εout(a) = ε(a)eY ,
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for all X,Y ∈ Ob(C) and a ∈ HomC(X,Y ). An antipode in C is a degree-preserving
linear map s : A→ A carrying HomC(X,Y ) to HomC(Y,X) for any X,Y ∈ Ob(C)
and satisfying

a(1)s(a(2)) = εin(a), s(a(1)) a(2) = εout(a),

for all a ∈ A. It follows immediately that s(eX) = eX for any X ∈ Ob(C).
A graded category C endowed with a comultiplication ∆, a counit ε, and an

antipode s is called a Hopf category. When C has a single object, we recover the
usual notion of a graded Hopf algebra. A Hopf category (C,∆, ε, s) is cocommutative
if ∆ = P21∆ and is involutive if s is an involution.

Basic properties of Hopf algebras (see, for instance, [Ka, Theorem III.3.4])
generalize to Hopf categories. We state the properties used in the sequel.

Lemma 2.3.1. The antipode s of a Hopf category C is an antiendomorphism of
the underlying algebra of A = A(C) in the sense that, for any homogeneous a, b ∈ A,

s(ab) = (−1)|a||b|s(b)s(a).

Also, s is an antiendomorphism of the underlying coalgebra of A in the sense that,
for any a ∈ A,

ε(s(a)) = ε(a) and (s(a))(1) ⊗ (s(a))(2) = (−1)|a
(1)||a(2)|s(a(2))⊗ s(a(1)).

Finally, the cocommutativity of C implies its involutivity, and the latter is equivalent
to any of the following two properties:

(i) for all a ∈ A, (−1)|a
(1)||a(2)|s(a(2))a(1) = εout(a);

(ii) for all a ∈ A, (−1)|a
(1)||a(2)|a(2)s(a(1)) = εin(a).

Proof. In the proof we will use the following notation. Recall that the al-
gebra A is linearly generated by morphisms in C. Given two expressions linearly
depending on one or several elements a, b, . . . of A, we relate these expressions by

the symbol
···
= if they are equal for all a, b, . . . and this equality follows from the

axioms of a Hopf category whenever a, b, . . . are morphisms in C.
Let C be the module of degree-preserving linear maps A⊗ A→ A. Note that

the comultiplication in A induces a degree-preserving coassociative comultiplication
in A⊗A carrying a⊗ b with a, b ∈ A to

(−1)|b
(1)||a(2)|(a(1) ⊗ b(1)

)
⊗
(
a(2) ⊗ b(2)

)
.

This comultiplication induces the convolution product ∗ in C by

(f ∗ g)(a⊗ b) = (−1)|b
(1)||a(2)|f

(
a(1) ⊗ b(1)

)
g
(
a(2) ⊗ b(2)

)
for any f, g ∈ C and any a, b ∈ A. We define elements l, r of C by l(a⊗ b) = s(ab)
and r(a ⊗ b) = (−1)|a||b|s(b)s(a) for any homogeneous a, b ∈ A. To prove the first
claim of the lemma we must show that l = r. To this end we define m,u, v ∈ C by

m(a⊗ b) = ab, u(a⊗ b) = εout(ab), v(a⊗ b) = εin(ab)

for any a, b ∈ A. Observe that

(u ∗ r)(a⊗ b) = (−1)|b
(1)||a(2)|+|b(2)||a(2)|εout(a

(1)b(1))
(
s(b(2))s(a(2))

)
···
= (−1)|b||a

(2)|ε(a(1)b(1)) s(b(2))s(a(2))
···
= (−1)|b||a

(2)|ε(a(1))ε(b(1)) s(b(2))s(a(2))
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= (−1)|b||a|s
(
ε(b(1))b(2)

)
s
(
ε(a(1))a(2)

)
= r(a⊗ b)

and

(l ∗m)(a⊗ b) = (−1)|b
(1)||a(2)|s

(
a(1)b(1)

) (
a(2)b(2)

)
= s

(
(ab)(1)

) (
(ab)(2)

)
= εout(ab) = u(a⊗ b).

Furthermore,

(m ∗ r)(a⊗ b) = (−1)|b
(1)||a(2)|+|b(2)||a(2)|(a(1)b(1)

) (
s(b(2))s(a(2))

)
= (−1)|b||a

(2)|a(1)
(
b(1)s(b(2))

)
s(a(2))

= (−1)|b||a
(2)|a(1)εin(b)s(a(2))

···
= a(1)εin(b)s(a(2))

= a(1)εin(b)s(a(2))ε(a(3))
···
= a(1)s(a(2))ε(a(3)b)

= εin(a(1))ε(a(2)b)
···
= εin(ab) = v(a⊗ b).

and

(l ∗ v)(a⊗ b) = (−1)|b
(1)||a(2)|s(a(1)b(1)) εin(a(2)b(2))

···
= (−1)|b

(1)||a(2)|s(a(1)b(1)) ε(a(2)b(2))
···
= (−1)|b

(1)||a(2)|s(a(1)b(1)) ε(a(2))ε(b(2))

= s
(
a(1)ε(a(2)) b(1)ε(b(2))

)
= l(a⊗ b).

Since ∗ is an associative operation, we deduce that

l = l ∗ v = l ∗m ∗ r = u ∗ r = r.

We now verify that s is an antiendomorphism of the unital coalgebra (A,∆, ε).
For this, we consider the module D of degree-preserving linear maps A → A ⊗ A,
and we equip it with the convolution product defined by

(f ∗ g)(a) = f(a(1)) g(a(2))

for any f, g ∈ D and any a ∈ A. Let l, r, u, v ∈ D be defined by

l = ∆s, r = (s⊗ s)P21∆, u = ∆εout, v = ∆εin.

We must prove that l = r. Observe that, for any a ∈ A,

(u ∗ r)(a) = ∆εout(a
(1))

(
(s⊗ s)P21∆(a(2))

)
···
= (−1)|a

(3)||a(4)|(εout(a
(1))⊗ εout(a

(2))
) (
s(a(4))⊗ s(a(3))

)
= (−1)|a

(3)||a(4)|εout(a
(1))s(a(4))⊗ εout(a

(2))s(a(3))
···
= (−1)|a

(2)a(3)||a(4)|ε(a(1))s(a(4))⊗ ε(a(2))s(a(3))

= (−1)|a
(2)||a(3)|ε(a(1))s(a(3))⊗ s(a(2))

= (−1)|a
(1)a(2)||a(3)|s(a(3))⊗ s

(
ε(a(1))a(2)

)
= (−1)|a

(1)||a(2)|s(a(2))⊗ s(a(1)) = r(a).

and

(l ∗∆)(a) = ∆(s(a(1))) ∆(a(2)) = ∆
(
s(a(1)) a(2)

)
= u(a).
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Furthermore,

(∆ ∗ r)(a) = ∆(a(1))
(
(s⊗ s)P21∆(a(2))

)
= (−1)|a

(3)||a(4)|(a(1) ⊗ a(2)
) (
s(a(4))⊗ s(a(3))

)
= (−1)|a

(2)a(3)||a(4)|a(1)s(a(4))⊗ a(2)s(a(3))

= (−1)|a
(2)||a(3)|a(1)s(a(3))⊗ εin(a(2))

···
= a(1)s(a(3))⊗ εin(a(2))

···
= v(a)

and

(l ∗ v)(a) = ∆s(a(1)) ∆εin(a(2))

= ∆
(
s(a(1))εin(a(2))

)
···
= ∆

(
s(a(1))ε(a(2))

)
= ∆

(
s
(
a(1)ε(a(2)

)
)
)

= l(a)

Using the associativity of ∗, we deduce that

l = l ∗ v = l ∗∆ ∗ r = u ∗ r = r.

Also, s preverves the counit: for any a ∈ A, we have

ε(a)
···
= ε(εin(a)) = ε

(
a(1)s(a(2))

)
···
= ε(a(1))ε

(
s(a(2))

)
= ε

(
s
(
ε(a(1))a(2)

))
= ε(s(a)).

We now prove the part of the lemma concerning the involutivity. If s2 = idA,
then the condition (i) is satisfied:

(−1)|a
(1)||a(2)|s(a(2))a(1) = s

(
s(a(1))a(2)

)
= s
(
εout(a)

)
= εout(a).

Assume now that the condition (i) is met and consider the convolution product ∗
in the module, E, of degree-preserving linear maps A→ A. For any a ∈ A,

(s ∗ s2)(a) = s(a(1)) s
(
s(a(2))

)
= (−1)|a

(1)||a(2)|s
(
s(a(2))a(1)

)
= s(εout(a)) = εout(a).

Thus, s ∗ s2 = εout. It follows from the axioms of a Hopf category that idA ∗s = εin

and εin ∗ f = f = f ∗ εout for each f ∈ E carrying the set HomC(X,Y ) into itself
for all X,Y ∈ Ob(C). Applying this to f = s2 and to f = idA and using the
associativity of ∗, we obtain

s2 = εin ∗ s2 = idA ∗s ∗ s2 = idA ∗ εout = idA .

This shows the equivalence between the involutivity and (i); the equivalence with
(ii) is proved similarly. Finally, if C is cocommutative, then the identity s∗idA = εout

implies (i), so that A is involutive. �

2.3.2. Bibrackets re-examined. Bibrackets in a Hopf category (C,∆, ε, s)
have a useful reformulation which we now describe. Consider the associated graded
algebra A = A(C) and a d-graded bibracket {{−,−}} : A⊗ A→ A⊗ A with d ∈ Z.
We define a linear map Λ = Λ({{−,−}}) : A⊗A→ A⊗A by

(2.3.1) Λ(a, b) = a(1)s
({{

a(2), b(1)
}}′ )

⊗
{{
a(2), b(1)

}}′′
s(b(2))

for any a, b ∈ A. Note that, if a ∈ HomC(X,Y ) and b ∈ HomC(U, V ) with
X,Y, U, V ∈ Ob(C), then Λ(a, b) ∈ HomC(X,U)⊗HomC(X,U).
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Lemma 2.3.2. For any a ∈ A and any homogeneous b, c ∈ A, we have

Λ(a, bc) = Λ
(
a, b(1)

)
ε
(
b(2)c

)
+ (−1)|b| |c| Λ(a, c) (s⊗ s)

(
∆(b)

)
,

Λ(ab, c) = Λ(a(1), c) ε(a(2)b) + ∆(a) Λ(b, c).

Proof. Since both sides of the first identity are linear in b and c, it suffices
to consider the case where b ∈ HomC(U, V ) and c ∈ HomC(W,Z) for some objects
U, V,W,Z of C. If V 6= W , then both sides of the identity are equal to zero. If
V = W , then Λ

(
a, b(1)

)
ε
(
b(2)c

)
= Λ(a, b) ε(c) and

Λ(a, bc) = a(1)s
({{

a(2), (bc)(1)
}}′ )

⊗
{{
a(2), (bc)(1)

}}′′
s((bc)(2))

= (−1)|b
(2)| |c|a(1)s

({{
a(2), b(1)c(1)

}}′ )
⊗
{{
a(2), b(1)c(1)

}}′′
s(c(2)) s(b(2))

= (−1)|b
(2)| |c|a(1)s

({{
a(2), b(1)

}}′ )
⊗
{{
a(2), b(1)

}}′′
c(1)s(c(2)) s(b(2))

+η1a
(1)s
({{

a(2), c(1)
}}′ )

s(b(1))⊗
{{
a(2), c(1)

}}′′
s(c(2)) s(b(2))

= ε(c) Λ(a, b) + η2 Λ(a, c)
(
s(b(1))⊗ s(b(2))

)
where the signs η1, η2 = ±1 are computed by

η1 = (−1)|b
(2)| |c|+|b(1)| |{{a(2),c(1)}}′|+|b(1)| |a(2)|d ,

η2 = η1 · (−1)|b
(1)| |{{a(2),c(1)}}′′c(2)| = (−1)|b| |c|.

The second identity is proved similarly with the key case being the one where
a, b are morphisms in C and the target object of a coincides with the source object
of b. Then Λ

(
a(1), c

)
ε
(
a(2)b

)
= Λ(a, c) ε(b) and

Λ(ab, c) = (ab)(1)s
({{

(ab)(2), c(1)
}}′ )

⊗
{{

(ab)(2), c(1)
}}′′

s(c(2))

= (−1)|a
(2)| |b(1)| a(1)b(1)s

({{
a(2)b(2), c(1)

}}′ )
⊗
{{
a(2)b(2), c(1)

}}′′
s(c(2))

= θ1a
(1)b(1)s

({{
b(2), c(1)

}}′ )
⊗ a(2)

{{
b(2), c(1)

}}′′
s(c(2))

+θ2 a
(1)b(1)s

({{
a(2), c(1)

}}′
b(2)
)
⊗
{{
a(2), c(1)

}}′′
s(c(2))

=
(
a(1) ⊗ a(2)

)
Λ(b, c)

+θ3 a
(1)b(1)s(b(2)) s

({{
a(2), c(1)

}}′ )
⊗
{{
a(2), c(1)

}}′′
s(c(2))

= ∆(a) Λ(b, c) + (−1)|a
(2)| |b|ε(b) Λ(a, c) = ∆(a) Λ(b, c) + ε(b)Λ(a, c)

where the signs θ1, θ2, θ3 = ±1 are computed by

θ1 = (−1)|a
(2)|·|b(1)|+|a(2)|·|{{b(2),c(1)}}′|,

θ2 = (−1)|a
(2)|·|b(1)|+|b(2)|·|c(1)|d+|b(2)|·|{{a(2),c(1)}}′′|,

θ3 = θ2 · (−1)|b
(2)|·|{{a(2),c(1)}}′| = (−1)|a

(2)| |b|. �

The bibracket {{−,−}} may be recovered from the map Λ at least in the case
where the antipode s in C is invertible. Indeed, for any a, b ∈ A,

s(a(1)) Λ
(
a(2), b(1)

)
b(2)(2.3.2)
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= s(a(1)) a(2)s
({{

a(3), b(1)
}}′ )

⊗
{{
a(3), b(1)

}}′′
s(b(2)) b(3)

= εout(a
(1)) s

({{
a(2), b(1)

}}′ )
⊗
{{
a(2), b(1)

}}′′
εout(b

(2))

= ε(a(1)) s
({{

a(2), b(1)
}}′ )

⊗
{{
a(2), b(1)

}}′′
ε(b(2))

= (s⊗ idA)({{a, b}}).
If follows that, if the antipode s is invertible, then

{{a, b}} = (s−1 ⊗ idA)
(
s(a(1)) Λ

(
a(2), b(1)

)
b(2)
)

= (−1)|a
(1)||a(2)b(1)|d (s−1 ⊗ idA)

(
Λ(a(2), b(1))

) (
a(1) ⊗ b(2)

)
.

2.3.3. Reducible bibrackets. Let {{−,−}} be a bibracket in a Hopf category
C = (C,∆, ε, s). It induces, in the notation of the previous subsection, a bilinear
pairing

λ = λ({{−,−}}) : A×A→ A

by λ = (ε⊗ idA)Λ. Explicitly, for any a, b ∈ A we have

(2.3.3) λ(a, b) = ε
({{

a, b(1)
}}′ ){{

a, b(1)
}}′′

s(b(2)).

It follows from Lemma 2.3.2 that, for any a ∈ A and any homogeneous b, c ∈ A,

λ(a, bc) = λ
(
a, b(1)

)
ε
(
b(2)c

)
+ (−1)|b| |c| λ(a, c) s(b),

λ(ab, c) = λ(a(1), c) ε(a(2)b) + a λ(b, c).

We call a bibracket {{−,−}} in C reducible if Λ(A⊗A) ⊂ ∆(A). Then

λ = (ε⊗ idA)Λ = (idA⊗ε)Λ: A×A −→ A and Λ = ∆ ◦ λ.
As a consequence, a reducible bibracket in a Hopf category with invertible antipode
is fully determined by the associated pairing λ.

Lemma 2.3.3. Suppose that the Hopf category C is cocommutative.

(i) If {{−,−}} is reducible, then, for any a, b ∈ A,

{{s(a), s(b)}} = (s⊗ s)P21 {{a, b}} ;

(ii) If {{−,−}} is d-antisymmetric, then (s⊗ s)Λ = −P21ΛP21,d;
(iii) If {{−,−}} is reducible and d-antisymmetric, then sλ = −λP21,d.

Proof. In the proof we will often use that s2 = idA. We begin with (i). It
easily follows from Lemma 2.3.2 that Λ(a, eX) = 0 = Λ(eX , a) for any a ∈ A and
X ∈ Ob(C). Hence, for any x, y ∈ A,

0 = Λ(x, εout(y)) = Λ
(
x, s(y(1))y(2)

)
= Λ

(
x, s(y(1))

)
ε(y(2)) + (−1)|y

(1)||y(2)|Λ
(
x, y(2))

)
(s⊗ s)∆

(
s(y(1))

)
= Λ

(
x, s(y)

)
+ (−1)|y

(1)y(2)||y(3)|+|y(1)||y(2)|Λ
(
x, y(3)

) (
y(2) ⊗ y(1)

)
.

Therefore

(2.3.4) Λ
(
x, s(y)

)
= −(−1)|y

(1)y(2)||y(3)|+|y(1)||y(2)|Λ
(
x, y(3)

) (
y(2) ⊗ y(1)

)
.

Similarly, for any x, y ∈ A,

0 = Λ(εout(x), y) = (−1)|x
(1)||x(2)|Λ

(
s(x(2))x(1), y

)
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= (−1)|x
(1)||x(2)|Λ

(
s(x(2)), y

)
ε(x(1)) + (−1)|x

(1)||x(2)|∆
(
s(x(2))

)
Λ
(
x(1), y

)
= Λ

(
s(x), y

)
+ (−1)|x

(1)||x(2)x(3)|+|x(2)||x(3)|(s(x(3))⊗ s(x(2))
)
Λ
(
x(1), y

)
,

and therefore

(2.3.5) Λ
(
s(x), y

)
= −(−1)|x

(1)||x(2)x(3)|+|x(2)||x(3)|(s(x(3))⊗ s(x(2))
)
Λ
(
x(1), y

)
.

We have

(s⊗ idA) {{s(a), s(b)}} (2.3.2)
= s

(
(s(a))(1)

)
Λ
(
(s(a))(2), (s(b))(1))

)
(s(b))(2)

= (−1)|a
(1)| |a(2)|+|b(1)| |b(2)| a(2) Λ

(
s(a(1)), s(b(2))

)
s(b(1))

(2.3.4)
= θ1 a

(2)
(

Λ
(
s(a(1)), b(4)

)
∗ b(3)

)
b(2)s(b(1))

= θ2 a
(2)
(

Λ
(
s(a(1)), b(3)

)
∗ b(2)

)
εin(b(1))

= θ3 a
(2)
(

Λ
(
s(a(1)), b(3)

)
∗ b(2)

)
ε(b(1))

= θ4 a
(2)
(

Λ
(
s(a(1)), b(2)

)
∗ b(1)

)
(2.3.5)

= θ5 a
(4)s(a(3))

(
s(a(2)) ∗ Λ

(
a(1), b(2)

)
∗ b(1)

)
= θ6 εin(a(3))

(
s(a(2)) ∗ Λ

(
a(1), b(2)

)
∗ b(1)

)
= θ7 ε(a

(3))
(
s(a(2)) ∗ Λ

(
a(1), b(2)

)
∗ b(1)

)
= θ8

(
s(a(2)) ∗ Λ

(
a(1), b(2)

)
∗ b(1)

)
where the signs θ1, θ2, . . . are computed by

θ1 = −(−1)|a
(1)| |a(2)|+|b(1)| |b(2)b(3)b(4)|+|b(2)b(3)||b(4)|+|b(2)||b(3)|

= −(−1)|a
(1)| |a(2)|+|b(1)| |b(2)|+|b(1)b(2)| |b(3)b(4)|+|b(3)||b(4)|,

θ2 = −(−1)|a
(1)| |a(2)|+|b(1)| |b(2)b(3)|+|b(2)||b(3)|,

θ3 = −(−1)|a
(1)| |a(2)|+|b(2)||b(3)| = −(−1)|a

(1)| |a(2)|+|b(1)b(2)||b(3)|,

θ4 = −(−1)|a
(1)| |a(2)|+|b(1)||b(2)|,

θ5 = (−1)|a
(1)a(2)a(3)| |a(4)|+|a(1)||a(2)a(3)|+|a(2)||a(3)|+|b(1)||b(2)|

= (−1)|a
(3)| |a(4)|+|a(1)a(2)| |a(3)a(4)|+|a(1)||a(2)|+|b(1)||b(2)|,

θ6 = (−1)|a
(1)a(2)| |a(3)|+|a(1)||a(2)|+|b(1)||b(2)|,

θ7 = (−1)|a
(1)||a(2)|+|b(1)||b(2)| = (−1)|a

(1)||a(2)a(3)|+|b(1)||b(2)|,

θ8 = (−1)|a
(1)||a(2)|+|b(1)||b(2)|.

Therefore, using the cocommutativity of C, we obtain

(s⊗ idA) {{s(a), s(b)}} = s(a(1)) ∗ Λ
(
a(2), b(1)

)
∗ b(2).

Besides,

(s⊗ idA)(s⊗ s)P21 {{a, b}} = P21(s⊗ idA) {{a, b}}
(2.3.2)

= P21

(
s(a(1)) Λ

(
a(2), b(1)

)
b(2)
)
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= s(a(1)) ∗
(
P21Λ

(
a(2), b(1)

))
∗ b(2)

= s(a(1)) ∗ Λ
(
a(2), b(1)

)
∗ b(2)

where the last equality uses the formula P21Λ = Λ which follows from the reducibil-
ity of {{−,−}}. We conclude that {{s(a), s(b)}} = (s⊗ s)P21 {{a, b}}.

We now prove (ii). If the bibracket {{−,−}} is d-antisymmetric, then for any
homogeneous a, b ∈ A,

ΛP21,d(a⊗ b) = (−1)|a|d|b|d Λ(b, a)

= (−1)|a|d|b|d b(1)s
({{

b(2), a(1)
}}′ )

⊗
{{
b(2), a(1)

}}′′
s(a(2))

= θ1b
(1)s
({{

a(1), b(2)
}}′′ )

⊗
{{
a(1), b(2)

}}′
s(a(2))

= θ2P21

({{
a(1), b(2)

}}′
s(a(2))⊗ b(1)s

({{
a(1), b(2)

}}′′ ))
= θ3P21(s⊗ s)

(
a(2)s

({{
a(1), b(2)

}}′ )
⊗
{{
a(1), b(2)

}}′′
s(b(1))

)
= −P21(s⊗ s)Λ(a, b)

where the last equality is a consequence of the cocommutativity of C and

θ1 = −(−1)d|b
(1)|+d|a(2)|+|a(1)||b(1)|+|a(2)||b(2)|+|a(2)||b(1)|+|{{a(1),b(2)}}′{{a(1),b(2)}}′′|,

θ2 = −(−1)d|b
(1)|+d|a(2)|+|a(1)||b(1)|+|a(2)||b(2)|+|a(2)||{{a(1),b(2)}}′′|+|{{a(1),b(2)}}′||b(1)|,

θ3 = −(−1)|a
(2)||a(1)|+|b(2)||b(1)|.

Finally, we deduce (iii) from (ii):

sλ = s(ε⊗ idA)Λ = (ε⊗ idA)(s⊗ s)Λ
= −(ε⊗ idA)P21ΛP21,d

= −(idA⊗ε)ΛP21,d = −λP21,d. �

2.3.4. Remark. Reducible bibrackets are interesting from the algebraic view-
point because they induce brackets in more general representation algebras asso-
ciated with algebraic groups. This class of algebras includes the representation
algebras considered here and associated with the general linear groups. For more
on this, see [MT2]. The bibrackets arising below in the geometric context are
reducible.

2.4. Hamiltonian reduction of bibrackets

We formulate Hamiltonian reduction for Gerstenhaber bibrackets based on a
notion of an H0-Poisson structure. In the non-graded case, the content of this
section is due to Crawley-Boevey [Cb] and Van den Bergh [VdB].

2.4.1. H0-Poisson structures. An H0-Poisson structure of degree d ∈ Z
on a graded algebra A is a d-graded Lie bracket 〈−,−〉 in the graded module
Ǎ = A/[A,A] such that, for all homogeneous x ∈ Ǎ, the map 〈x,−〉 : Ǎ → Ǎ lifts
to a derivation A→ A of degree |x|d = |x|+d. If A is a commutative graded algebra,
then an H0-Poisson structure of degree d in A is nothing but a Gerstenhaber bracket
of degree d in A.
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Lemma 2.4.1. Given a Gerstenhaber bibracket of degree d in a graded algebra A,
the induced bracket 〈−,−〉 in Ǎ is an H0-Poisson structure of degree d on A.

Proof. That 〈−,−〉 is a d-graded Lie bracket in Ǎ follows from Lemma 1.4.1.
The same lemma shows that the formula x 7→ 〈x,−〉 defines a linear map Ǎ →
Der(A) which preserves the Lie bracket and carries Ǎp to Derp+d(A) for all p ∈ Z.
This implies the claim of the lemma. �

Theorem 2.4.2. Let 〈−,−〉 be an H0-Poisson structure of degree d on a graded
algebra A and let N ≥ 1. Then there is a unique Gerstenhaber bracket {−,−} of
degree d in the trace algebra AtN ⊂ AN such that{

tr(ǎ), tr(b̌)
}

= tr 〈ǎ, b̌〉

for any ǎ, b̌ ∈ Ǎ.

Proof. The proof follows the same lines as in the non-graded case, see [Cb,
Theorem 4.5]. The uniqueness of {−,−} is obvious because the image of the trace
map tr : Ǎ→ AN generates AtN . To prove the existence, consider the commutative

graded algebra S = S(Ǎ) freely generated by the graded module Ǎ (the symmetric
algebra of Ǎ). The d-graded Lie bracket 〈−,−〉 in Ǎ uniquely extends to a Gersten-
haber bracket 〈−,−〉S of degree d in S. The map tr : Ǎ → AN uniquely extends
to a graded algebra homomorphism T : S → AtN , which is surjective. Therefore,
it suffices to prove the existence of a map {−,−} : AtN × AtN → AtN such that the
following diagram commutes:

S × S
〈−,−〉S

//

T×T
��

S

T

��

AtN ×AtN
{−,−}

// AtN .

In other words, we need to show that the pairing T 〈−,−〉S : S×S → AtN annihilates
Ker(T ). Since the bracket 〈−,−〉S is d-antisymmetric, it suffices to show that
T 〈r,Ker(T )〉S = 0 for any r ∈ S. Since the bracket 〈−,−〉S satisfies the d-graded
Leibniz rule in the first variable and T is an algebra homomorphism, it suffices to
consider the case r ∈ Ǎ. By the definition of an H0-Poisson structure, the map
〈r,−〉 : Ǎ → Ǎ lifts to a derivation δ : A → A. There is a unique derivation
δN : AN → AN such that δN (aij) = (δ(a))ij for any a ∈ A and i, j ∈ {1, . . . , N}.
Then, for any a ∈ A,

δN (tr(a)) = δN

(∑
i

aii

)
=
∑
i

(δ(a))ii = tr δ(a) = tr 〈r, ǎ〉S .

It follows that the maps δNT : S → AN and T 〈r,−〉S : S → AtN ⊂ AN are equal

on Ǎ ⊂ S. Since Ǎ generates the algebra S and both these maps are derivations,
they must be equal. As a consequence, T 〈r,Ker(T )〉S = 0. �

Combining Lemma 2.4.1 and Theorem 2.4.2, we obtain that any Gerstenhaber
bibracket of degree d in A induces a Gerstenhaber bracket of degree d in AtN .
Clearly this bracket is the restriction of the Gerstenhaber bracket in AN provided
by Lemma 1.2.5.
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2.4.2. Moment maps. Let A be a unital graded algebra equipped with a
Gerstenhaber bibracket {{−,−}} of degree d. A moment map for {{−,−}} is an
element µ ∈ A−d such that {{µ, a}} = a⊗ 1A − 1A ⊗ a for all a ∈ A or, equivalently,
{{a, µ}} = a⊗ 1A− 1A⊗ a for all a ∈ A. If d 6= 0, then there is at most one moment
map. If d = 0, then for any moment map µ ∈ A0 and any k ∈ K, the sum µ+ k1A
is a moment map.

Lemma 2.4.3. Let µ ∈ A−d be a moment map. The bracket 〈−,−〉 in A asso-
ciated with {{−,−}} induces an H0-Poisson structure of degree d on B = A/AµA.

Proof. Let p : A → B and h : B → B̌ = B/[B,B] be the canonical pro-
jections. Clearly, p carries [A,A] to [B,B] and induces a linear map p̌ : Ǎ → B̌.
Lemma 1.4.1(iii) shows that the bracket 〈−,−〉 in A induces a pairing 〈−,−〉 :
Ǎ ⊗ A → A. We claim that there are linear maps u, v such that the following
diagram commutes:

(2.4.1) Ǎ⊗A
id⊗p

//

〈−,−〉
��

Ǎ⊗B

u

��

p̌⊗h
// B̌ ⊗ B̌

v

��

A
p

// B
h // B̌ .

Such maps u, v are necessarily unique because p, p̌, h are onto. As a consequence,
the following diagram commutes:

Ǎ⊗ Ǎ

〈−,−〉
��

p̌⊗p̌
// B̌ ⊗ B̌

v

��

Ǎ
p̌

// B̌ .

Therefore v is a d-graded Lie bracket in B̌. Since 〈x,−〉 : A→ A is a derivation for
all x ∈ Ǎ and p̌ is onto, the Lie bracket v is an H0-Poisson structure on B.

It remains to verify the claim above. The definitions of the moment map µ and
the bracket 〈−,−〉 in A imply that 〈A,µ〉 = 0. Hence, 〈A,AµA〉 ⊂ AµA = Ker p.
This inclusion implies the existence of u. By Lemma 1.4.1(ii),

〈AµA,A〉 ⊂ AµA+ [A,A] = Kerhp.

This implies the existence of v. �

By Theorem 2.4.2, we obtain that under the assumptions of Lemma 2.4.3, the
bibracket in A induces Gerstenhaber brackets of degree d on the trace algebras
of B = A/AµA. As an exercise, the reader may extend Lemma 2.4.3 to the setting
of graded categories discussed in Section 2.2.





CHAPTER 3

Face homology

3.1. Manifolds with faces and partitions

We recall manifolds with faces and discuss partitions on such manifolds.

3.1.1. Manifolds with faces. We start with a bigger class of manifolds with
corners, see [Ce], [Do], [Jä], [MrOd], and [Jo]. An n-dimensional manifold with
corners with n ≥ 0, or, shorter, an n-manifold with corners, is a paracompact
Hausdorff topological space locally differentiably (C∞) modelled on open subsets of
[0,∞)n. For a definition in terms of local coordinate systems and for further details,
see [Jo]. The underlying topological space of an n-manifold with corners K is an
n-dimensional topological manifold with boundary. The topological boundary of K
is denoted by ∂K (the symbol ∂K has a different meaning in [Jo]). The dimension
function dK : K → Z carries a point of K represented by a tuple (x1, . . . , xn) in a
local coordinate system to the number of non-zero terms in this tuple (this number
does not depend on the choice of the local coordinate system). For r ≥ 0, the set

Kr = {x ∈ K : dK(x) ≤ r}

is a closed subset of K. It is clear that

K0 ⊂ K1 ⊂ · · · ⊂ Kn−1 = ∂K ⊂ Kn = K.

Also, K0 = d−1
X (0) is a discrete set, and Kr \ Kr−1 is a smooth r-dimensional

manifold for all r ≥ 1.
The set P (K) = ∂K \Kn−2 is an open subset of ∂K and any x ∈ ∂K belongs

to the closure of at most n − dK(x) connected components of P (K). We call K
a manifold with faces if K is compact and every x ∈ ∂K belongs to the closure
of precisely n − dK(x) different components of P (K). This condition implies that
the closure in K of any component of P (K) is an (n − 1)-dimensional manifold
with faces whose dimension function is the restriction of dK . We call the closure
of a component of P (K) a principal face of K. We can now define recursively on
n = dimK the notion of a face of K. By definition, a face of K is a connected
component of K, or a principal face of K, or a face of a principal face of K.
Clearly, K has only a finite number of faces, and each face of K is a connected
manifold with faces. The union of faces of K of dimension ≤ r is equal to Kr for
all r ≥ 0. The faces of K contained in ∂K are said to be proper.

Every point x of K lies in the interior of a unique face Fx of K. If dK(x) ≥ 1,
then Fx is the closure of the component of Kr \Kr−1 containing x for r = dK(X).
If dK(x) = 0, then Fx = {x}. Note that Fx is the smallest face of K containing x:
any face of K containing x contains Fx as a face.

For example, any compact smooth manifold M is a manifold with faces, and
its faces are the components of M and of ∂M . For any n ≥ 0, an n-dimensional

33
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simplex is a manifold with faces and its faces are the usual combinatorial faces.
Finite disjoint unions and finite products of manifolds with faces are manifolds
with faces in the obvious way. The empty set is considered as an n-manifold with
faces for any n ≥ 0.

Following [MrOd], we call a map f from an n-manifold with faces K to an
m-manifold with faces L smooth if, restricting f to any local coordinate systems
in these manifolds, we obtain a map that extends to a C∞-map from an open
subset of Rn to Rm. (Such a map f is said to be “weakly smooth” in [Jo].) A
smooth map f : K → L is continuous and its restriction to any face F of K is a
smooth map F → L. A map f : K → L is a diffeomorphism if it is a bijection and
both f and f−1 are smooth. Diffeomorphisms of manifolds with faces preserve the
dimension function and carry faces onto faces.

We can define smooth (C∞) triangulations of a manifold with faces repeating
word for word the standard definition of a smooth triangulation of an ordinary
manifold [Mu, Section 8.3] and requiring all faces to be subcomplexes. (The latter
condition is probably satisfied automatically but we prefer to spell it out.) The
standard methods of the theory of smooth triangulations [Mu, Section 10.6] apply
in this setting and show that all manifolds with faces have smooth triangulations.

A manifold with faces K is oriented if its underlying topological manifold is
oriented. The oriented manifold with faces obtained from K by inverting the ori-
entation is denoted by −K.

3.1.2. Partitions. By a partition ϕ on a manifold with faces K we mean a
partition of the set of faces of K into disjoint subsets, called types, and a family of
diffeomorphisms {ϕF,G : F → G}(F,G) numerated by ordered pairs (F,G) of faces
of K of the same type such that

(a) ϕF,F = idF for any face F of K and ϕG,H ϕF,G = ϕF,H for any faces
F,G,H of K of the same type;

(b) if F,G are faces of K of the same type, then ϕF,G : F → G carries any
face F ′ of F onto a face G′ of G so that F ′, G′ have the same type as faces
of K and ϕF ′,G′ = ϕF,G|F ′ : F ′ → G′.

The diffeomorphisms {ϕF,G}(F,G) will be called identification maps. For example,
every manifold with faces K has a trivial partition such that two faces have the
same type if and only if they coincide.

Given a partition ϕ on K, we write x ∼ϕ y for points x, y ∈ K if there are faces
F,G of K of the same type such that x ∈ F , y ∈ G, and ϕF,G(x) = y. Clearly,
x ∼ϕ y if and only if the faces Fx, Fy have the same type and ϕFx,Fy (x) = y. Then
∼ϕ is an equivalence relation on K. The quotient topological space Kϕ = K/∼ϕ
may not be a manifold. For any set L ⊂ K, we denote by Lϕ the image of L under
the projection K → Kϕ.

A smooth triangulation T of K fits a partition ϕ on K if the identification map
ϕF,G : F → G is a simplicial isomorphism for any faces F,G of the same type.

Lemma 3.1.1. For any partition ϕ on K, there exists a smooth triangulation T
of K which fits ϕ and projects to a triangulation, Tϕ, of the quotient space Kϕ.

Proof. We construct by induction on r ≥ 0 a smooth triangulation T r of Kr

satisfying the following condition: all the identification maps between faces of K
of dimension ≤ r are simplicial isomorphisms. The case r = 0 is obvious: we just
take T 0 = K0. Given T r−1, we construct T r as follows: pick one r-dimensional face
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of K in each type and extend T r−1 to the union of Kr−1 with these faces using the
theory of smooth triangulations [Mu, Section 10.6]. The resulting triangulation of
this union uniquely extends to a triangulation T r of Kr satisfying the condition
above. Set n = dimK. Clearly, T = Tn is a smooth triangulation of K that fits ϕ.

Let T ′ and T ′′ be the first and second barycentric subdivisions of T , respectively.
Both T ′ and T ′′ fit ϕ. We claim that (i) the projection π : K → Kϕ is injective on
each simplex of T ′ and (ii) the images under π of any two simplices of T ′′ (which
by (i) are simplices) meet along a common face. Thus, the triangulation T ′′ of K
projects to a triangulation of Kϕ and satisfies the conditions of the lemma.

To prove (i), consider a simplex τ of T ′. Since all simplices of T ′ are faces of n-
simplices, it suffices to consider the case where dim(τ) = n. Note that the restriction
of π : K → Kϕ to the interior of any face of K is injective. Moreover, for any faces
F ⊂ G of K, the restriction of π to Int(F )∪ Int(G) is injective. Therefore, to prove
the injectivity of π|τ , it is enough to find a sequence of faces F0 ⊂ F1 ⊂ · · · of K,
possibly with repetitions, such that τ ⊂ ∪i Int(Fi). Let σ0 ⊂ σ1 ⊂ · · · ⊂ σn be the
simplices of T whose barycenters are the vertices of τ where dim(σi) = i for all i.
Let Fi be the smallest face of K containing σi. The inclusions σi−1 ⊂ ∂σi ⊂ Fi
imply that Fi−1 ⊂ Fi for all i. Note that Int(σi) ⊂ Int(Fi) since ∂Fi is a subcomplex
of T . Thus, τ ⊂ ∪i Int(σi) ⊂ ∪i Int(Fi).

To prove (ii), observe first that for any simplex ∆ of T ′, the set π−1(π(∆))
is a subcomplex of T ′. Indeed, this set is equal to ∪F,G ϕF,G(∆ ∩ F ) where F,G
run over all faces of K of the same type. Since T ′ fits ϕ and both ∆ and F are
subcomplexes of T ′, so are the sets ∆ ∩ F , ϕF,G(∆ ∩ F ), and π−1(π(∆)).

Consider any simplices τ1, τ2 of the triangulation T ′′. Let ∆1 and ∆2 be sim-
plices of T ′ containing τ1 and τ2 respectively. Set R = π(∆1) ∩ π(∆2). Clearly, R
is the image of the set ∆1 ∩ π−1(π(∆2)) under π. By the above, the latter set
is a subcomplex of ∆1. Therefore, R is a subcomplex of the simplex π(∆1). We
claim that R ∩ π(τ1) is a face of the simplex π(τ1). This claim would imply that
R ∩ π(τ1) = π(τ0) for a simplex τ0 of T ′′. Since R ⊂ π(∆2), we can assume (re-
placing if necessary τ0 by some ϕF,G(τ0)) that τ0 ⊂ ∆′2 where ∆′2 is the barycentric
subdivision of ∆2. Then

π(τ1) ∩ π(τ2) = R ∩ π(τ1) ∩ π(τ2) = π(τ0) ∩ π(τ2)

is an intersection of two simplices of π(∆′2). Hence, it is a simplex of π(∆′2) and
a face of π(τ2). By symmetry between τ1 and τ2, the intersection π(τ1) ∩ π(τ2) is
also a face of π(τ1).

To prove the claim above, we need only to show that any subcomplex R of an
arbitrary simplex ∆ meets any simplex τ of the first barycentric subdivision ∆′

along a face of τ . Clearly, R ∩ τ is an intersection of two subcomplexes of ∆′ and
therefore a subcomplex of τ . Set k = dim τ and let σ0 ⊂ · · · ⊂ σk be the faces
of ∆ whose barycenters v0, . . . , vk are the vertices of τ . Let i be the largest integer
such that vi ∈ R. Since R contains an interior point of σi and R is a subcomplex
of ∆, we have σi ⊂ R. Then R contains the face 〈v0, . . . , vi〉 of τ . Since R ∩ τ is a
subcomplex of τ not containing vi+1, . . . , vk, we have R ∩ τ = 〈v0, . . . , vi〉. �

3.2. Polychains, polycycles, and face homology

We introduce the face homology of a topological space X.
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3.2.1. Polychains. Given a partition ϕ on a manifold with faces K, we say
that a continuous map κ : K → X is compatible with ϕ if κ ◦ ϕF,G = κ|F : F → X
for any faces F,G of K of the same type. Every such κ is obtained by composing
the projection K → Kϕ with a continuous map Kϕ → X.

An n-dimensional polychain or, shorter, an n-polychain in X with n ≥ 0 is a
quadruplet K = (K,ϕ, u, κ) where K is an oriented n-manifold with faces, ϕ is a
partition on K, u is a map π0(K) → K called the weight, and κ : K → X is a
continuous map compatible with ϕ. By convention, for every n ≥ 0, there is an
empty n-polychain ∅ whose underlying n-manifold is the empty set.

A diffeomorphism of n-polychains K = (K,ϕ, u, κ) and K′ = (K ′, ϕ′, u′, κ′)
in X is a diffeomorphism f : K → K ′ such that

(1) κ = κ′ ◦ f ;
(2) faces F,G of K have the same type if and only the faces f(F ), f(G) of K ′

have the same type and then f |G ◦ ϕF,G = ϕ′f(F ),f(G) ◦ f |F : F → f(G);

(3) u′(f(C)) = deg
(
f |C : C → f(C)

)
u(C) for any connected component C

of K where deg denotes the degree of a diffeomorphism.

We say that n-polychains K and K′ in X are diffeomorphic and we write K ∼= K′

if there exists a diffeomorphism of K onto K′. It is clear that ∼= is an equivalence
relation. By definition, the diffeomorphism class of a polychain K = (K,ϕ, u, κ)
is preserved if one simultaneously inverts the orientation of a component of K
and multiplies the corresponding weight by −1. Therefore the opposite polychain
−K = (−K,ϕ, u, κ) is diffeomorphic to (K,ϕ,−u, κ).

Examples of polychains are provided by singular manifolds in X, that is pairs
(an oriented smooth compact manifold M , a continuous map κ : M → X). Such
a pair determines a polychain (M,ϕ, u, κ) where M is viewed as a manifold with
faces as in Section 3.1.1, ϕ is the trivial partition, and u = 1 ∈ K is the constant
function on π0(M). As explained below, polychains in X may be also extracted
from singular chains in X. Thus, we can view polychains as common generalisations
of singular manifolds and singular chains in which the role of source spaces is played
by manifolds with faces.

3.2.2. Reduced polychains. A polychain K = (K,ϕ, u, κ) in X is reduced if
any distinct connected components of K have different types with respect to ϕ and
u(C) 6= 0 for any connected component C of K. We define two transformations
of an arbitrary polychain K = (K,ϕ, u, κ) in X whose composition turns K into a
reduced polychain.

To define the first transformation, pick a representative in each type of con-
nected components of K, and let K+ ⊂ K be the union of these representatives.
Clearly, K+ is a manifold with faces which we endow with orientation induced from
that of K. Restricting ϕ and κ to K+ we obtain a partition ϕ+ on K+ and a map
κ+ : K+ → X compatible with ϕ+. We define a weight u+ on K+ by

u+(C) =
∑
C′

deg(ϕC,C′)u(C ′)

where C is a component of K lying in K+ and C ′ runs over all components of K
of the same type as C. It is clear that (K+, ϕ+, u+, κ+) is a polychain in X whose
distinct components have different types. This polychain, denoted red+(K), is
determined by K uniquely up to diffeomorphism.
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The second transformation of a polychain K = (K,ϕ, u, κ) removes from K
all connected components with zero weight and restricts ϕ, u, κ to the remaining
manifold with faces. The resulting polychain is denoted red0(K).

The two-step operation red = red0 red+ transforms an arbitrary polychain into
a reduced polychain defined uniquely up to diffeomorphism. It is clear that a
polychain K is reduced if and only if red(K) ∼= K.

3.2.3. Operations. The boundary of an n-polychain K = (K, ϕ, u, κ) in X is
the (n− 1)-polychain ∂K = (K∂ , ϕ∂ , u∂ , κ∂) in X defined as follows.

� The manifold with faces K∂ is the disjoint union of all principal faces of K
endowed with orientation induced from that of K (see the Introduction
for our orientation conventions).
� Let ι : K∂ → K be the natural map identifying each component of K∂

with its copy in K. Two faces F,G of K∂ have the same type if the faces
ι(F ), ι(G) of K have the same type and

ϕ∂F,G = (ι|G)−1ϕι(F ),ι(G)ι : F → G.

� For any connected component P of K∂ , we set u∂(P ) = u(KP ) where KP

is the connected component of K containing the principal face ι(P ).
� We set κ∂ = κι : K∂ → X.

The boundary of a polychain is well defined up to diffeomorphism, and diffeomor-
phic polychains have diffeomorphic boundaries. The reduced boundary ∂rK of a
polychain K is defined by ∂rK = red(∂K).

Lemma 3.2.1. For any polychain K in X, ∂rred(K) = ∂rK and ∂r∂rK = ∅.

Proof. The first identity is clear. The second identity follows from the first:

∂r∂rK = ∂rred(∂K) = ∂r∂K = red0 red+(∂∂K) = ∅. �

The disjoint union of two n-polychains K1,K2 in X is defined in the obvious
way and is denoted K1 tK2. Clearly,

red(K1 tK2) = red(K1) t red(K2) and ∂(K1 tK2) = ∂K1 t ∂K2

so that ∂r(K1 tK2) = ∂r(K1) t ∂r(K2).
For k ∈ K and a polychain K = (K,ϕ, u, κ) in X, set kK = (K,ϕ, ku, κ).

Clearly,

red(kK) = red (k red(K)) and ∂(kK) = k∂K

so that ∂r(kK) = red(k∂rK). Note that the polychain (−1)K is diffeomorphic to
the polychain −K opposite to K.

3.2.4. Face homology. The diffeomorphism classes of n-polychains in X may
be added and multiplied by elements of K, but do not form a module because the
distributivity relation (k + l)K ∼= kK t lK fails. Also, it is natural to throw in
relations identifying K with red(K) for all K. Quotienting the set of diffeomorphism
classes of n-polychains in X by the relations of these two types, we obtain the
K-module of n-polychains in X. These modules together with the boundary maps
induced by ∂ form the face chain complex of X whose homology is the face homology
of X. However, we prefer the following more direct definition of face homology.
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We say that n-polychains K1 and K2 in X are homologous, and write K1 ' K2,
if there exist (n+ 1)-polychains L1,L2 in X such that

red(K1) t ∂rL1
∼= red(K2) t ∂rL2.

Clearly, the homology relation ' is an equivalence relation (weaker than the diffeo-
morphism relation ∼=). The homology class of an n-polychain K in X is denoted by
〈K〉. Note that 〈K〉 = 〈red(K)〉. If K1 and K2 are homologous, then ∂rK1

∼= ∂rK2.
A polychain K = (K,ϕ, u, κ) is a polycycle if ∂rK = ∅. A polychain homolo-

gous to a polycycle is itself a polycycle. In particular, if K is a polycycle, then so
is red(K) and vice versa. Let

H̃n(X) = {n-polycycles in X}/ '

be the set of homology classes of n-polycycles in X. Note that the disjoint union
of polycycles is a polycycle, and multiplication of polycycles by elements of K yield
polycycles.

Lemma 3.2.2. Disjoint union of polycycles together with multiplication of poly-

cycles by elements of K turn H̃n(X) into a module (over K).

Proof. Clearly, the disjoint union of polychains is compatible with ' and in-

duces a binary operation in H̃n(X). This operation is associative and commutative

with ∅ representing the zero element. Thus, H̃n(X) is an abelian monoid.

To prove that H̃n(X) is a group, we use the cylinder construction on polychains.
Consider an n-polychain K = (K,ϕ, u, κ) in X. We define the cylinder polychain

K = (K,ϕ, u, κ) as follows. Set K = K × I where I = [0, 1] is viewed as a manifold
with faces I, {0}, {1} and endow K with the product orientation. Two faces F ×J ,
G × J ′ of K × I are of the same type if F,G are faces of K of the same type and
J = J ′ is any face of I; then ϕF×J,G×J = ϕF,G×idJ . By definition, u(C×I) = u(C)

for any connected component C of K, and κ : K → X is the composition of the
cartesian projection K → K with κ : K → X. It follows from the definitions that

red(K) ∼= red(K) and ∂K ∼= K t (−K) t ∂K.

Therefore

∂rK = red(∂K) ∼= red(K) t red(−K) t red(∂K) ∼= red(K) t red(−K) t ∂r(K).

If K is a polycycle, this gives ∂rK ∼= red(K) t red(−K). Therefore K t (−K) ' ∅.

We conclude that H̃n(X) is an abelian group.
Given two homologous n-polycycles K1 and K2 in X, pick (n + 1)-polychains

L1,L2 in X such that red(K1) t ∂rL1
∼= red(K2) t ∂rL2. Then, for any k ∈ K,

red
(
k
(

red(K1) t ∂rL1

)) ∼= red
(
k
(

red(K2) t ∂rL2

))
.

For each i ∈ {1, 2},

red
(
k
(

red(Ki) t ∂rLi
))

= red (k red(Ki)) t red (k∂rLi) = red(kKi) t ∂r(kLi).

We deduce that kK1 ' kK2. Thus, the multiplication by k ∈ K induces a well

defined map H̃n(X)→ H̃n(X).
The axioms of a K-module are straightforward except the linearity in k. The

latter is a consequence of the following fact: if K1 = (K,ϕ, u1, κ) and K2 =
(K,ϕ, u2, κ) are n-polycycles in X (with the same K,ϕ, κ), then the n-polychain
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K = (K,ϕ, u1 + u2, κ) is a polycycle homologous to K1 t K2. To see this, con-

sider the cylinder polychain K1 tK2
∼= K1 tK2 (as defined above) and modify its

partition by additionally declaring that, for any face F of K, the faces (F × {0})1

and (F × {0})2 of (K × I)1 t (K × I)2 have the same type and the corresponding
identification map is the identity map. This gives an (n+ 1)-polychain L such that

red+(∂L) ∼= red+(K1) t red+(K2) t red+(−K) t (a polychain with zero weight).

Therefore

∂rL ∼= red(K1) t red(K2) t red(−K).

Hence, K is a polycycle homologous to K1 tK2. �

We call H̃n(X) the n-th face homology of X (with coefficients in K). The
face homology extends to a functor from the category of topological spaces to
the category of modules: a continuous map f : X → Y induces a linear map

f∗ : H̃n(X) → H̃n(Y ) carrying the homology class of a polycycle K = (K,ϕ, u, κ)
in X to the homology class of the polycycle f∗(K) = (K,ϕ, u, fκ) in Y .

3.2.5. Deformations. A deformation of a polychain K = (K,ϕ, u, κ) in X
is a family of polychains {Kt = (K,ϕ, u, κt)}t∈I with the same K,ϕ, u such that
{κt : K → X}t∈I is a (continuous) homotopy of κ0 = κ. By the definition of a
polychain, the map κt is compatible with ϕ for all t ∈ I.

Lemma 3.2.3. If {Kt}t∈I is a deformation of a polycycle K, then K1 is a
polycycle homologous to K = K0.

Proof. Equality ∂rK1 = ∅ is a direct consequence of the assumption ∂rK =
∅. Consider the cylinder polychain K = (K,ϕ, u, κ) associated with K = (K,ϕ, u, κ)
in the proof of Lemma 3.2.2. Let κ̂ : K = K × I → X be the map determined by
the homotopy {κt}t∈I of κ. Then R = (K,ϕ, u, κ̂) is a polychain such that

∂rR ∼= red(K1) t red(−K0).

This implies that K0 ' K1. �

Lemma 3.2.4. Let X,Y be topological spaces. If maps f, g : X → Y are homo-

topic, then f∗ = g∗ : H̃∗(X)→ H̃∗(Y ).

Proof. Pick a homotopy {f t}t∈I between f0 = f and f1 = g. For any poly-
cycle K = (K,ϕ, u, κ) in X, we have a deformation {(K,ϕ, u, f tκ)}t∈I relating the
polycycles f∗(K) = (K,ϕ, u, fκ) and g∗(K) = (K,ϕ, u, gκ). Lemma 3.2.3 implies
that these polycycles are homologous. Hence, f∗ = g∗. �

Lemma 3.2.4 implies that a homotopy equivalence between topological spaces
induces an isomorphism of their face homology.

3.2.6. Cross product. The cartesian product K × L of two manifolds with
faces K and L can be viewed as a manifold with faces in the obvious way. The
faces of K × L are the products F × G where F runs over faces of K and G runs
over faces of L. When K and L are oriented, we always provide K × L with the
product orientation. This construction leads to a cross product in face homology
as follows.
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Let X and Y be topological spaces. The cross product of a p-polychain K =
(K,ϕ, u, κ) in X and a q-polychain L = (L,ψ, v, λ) in Y is the (p+ q)-polychain

K× L = (K × L,ϕ× ψ, u× v, κ× λ)

in X × Y . Here ϕ×ψ is the following partition on K ×L: for faces F, F ′ of K and
G,G′ of L, the faces F ×G and F ′ ×G′ of K × L have the same type if, and only
if, F has the same type as F ′ and G has the same type as G′, and then

(ϕ× ψ)F×G,F ′×G′ = ϕF,F ′ × ψG,G′ .
The weight u×v carries C×D to u(C) v(D) for any connected components C of K
and D of L. We also define the reduced cross product of K and L by

K×r L = red (K× L) .

Note that

(3.2.1) K×r L ∼= K×r red(L) ∼= red(K)×r L ∼= red(K)×r red(L).

Lemma 3.2.5. (i) For any p-polychains K1,K2 in X and q-polychain L in Y ,

(K1 tK2)×r L ∼= (K1 ×r L) t (K2 ×r L).

(ii) For any p-polychain K in X and for any q-polychain L in Y ,

∂r(K×r L) ∼= (∂rK×r L) t (−1)p (K×r ∂rL) .

Proof. Clearly, (K1 tK2)× L = (K1 × L) t (K2 × L) so that

(K1 tK2)×r L = red ((K1 tK2)× L) ∼= red(K1 × L) t red(K2 × L)

which proves (i). We now prove (ii). Let K and L be the oriented manifolds with
faces underlying K and L respectively. A principal face of K × L has either the
form P ×D, where P is a principal face of K and D is a component of L, or the
form C × Q, where C is a component of K and Q is a principal face of L. The
orientation of P ×D ⊂ ∂(K ×L) inherited from K ×L coincides with the product
orientation of P ×D where P ⊂ ∂K inherits orientation from K. The orientation
of C ×Q ⊂ ∂(K ×L) inherited from K ×L differs from the product orientation of
C ×Q, where Q ⊂ ∂L inherits orientation from L, by the sign (−1)p. So

∂(K× L) ∼= (∂K× L) t (−1)p (K× ∂L) .

Therefore

∂r(K×r L) = ∂r red(K× L) = ∂r(K× L)

= red ∂(K × L)
∼= (∂K×r L) t (−1)p (K×r ∂L) .

We conclude thanks to (3.2.1). �

Lemma 3.2.6. The cross product of polychains induces a bilinear map

(3.2.2) × : H̃∗(X)× H̃∗(Y ) −→ H̃∗(X × Y ).

Proof. Let K be a polycycle in X and L be a polycycle in Y . Lemma 3.2.5.(ii)
implies that K ×r L is a polycycle. This polycycle is the reduction of K × L, and
therefore K×L also is a polycycle. We claim that assigning to (K,L) the homology
class 〈K×r L〉 = 〈K× L〉 one obtains a well defined pairing (3.2.2). Let us prove
the independence of the choice of K in its homology class (the second variable is
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treated similarly). Consider two homologous polycycles K1 and K2 in X, and let
P1,P2 be polychains in X such that

red(K1) t ∂rP1
∼= red(K2) t ∂rP2.

Lemma 3.2.5.(i) implies that

(red(K1)×r L) t (∂rP1 ×r L) ∼= (red(K2)×r L) t (∂rP2 ×r L).

For i ∈ {1, 2}, formula (3.2.1) gives red(Ki)×r L ∼= red(Ki ×r L). Since ∂rL = ∅,
Lemma 3.2.5.(ii) gives ∂rPi ×r L = ∂r(Pi ×r L). Therefore K1 ×r L ' K2 ×r L.

The linearity of (3.2.2) in the first variable follows from Lemma 3.2.5.(i) and
the equality (kK)×L = k(K×L) for all k ∈ K. The linearity in the second variable
is proved similarly. �

3.2.7. Remarks. 1. A polychain derived from a singular manifold κ : M → X
(see Section 3.2.1) is a polycycle if and only if ∂M = ∅. The oriented bordism
classes of n-dimensional singular manifolds κ : M → X with ∂M = ∅ form an
abelian group Ωn(X), called the n-dimensional oriented bordism group of X. Treat-

ing singular manifolds as polychains, we obtain an additive map Ωn(X)→ H̃n(X).
By Remark 3.3.5.2 below, this map is not surjective for some n,X, and K = Z.
Thus, some face homology classes over Z are not representable by singular mani-
folds.

2. For a topological pair (X,Y ) and an integer n ≥ 0, we define the n-th

relative face homology H̃n(X,Y ) as follows. Given n-polychains K1,K2 in X, we
write K1 'Y K2, if there exist (n + 1)-polychains L1,L2 in X and n-polychains
N1,N2 in Y such that

red(K1) t ∂rL1 t ι∗(N1) ∼= red(K2) t ∂rL2 t ι∗(N2)

where ι : Y ↪→ X is the inclusion map. An n-polychain K in X is a polycycle
relative to Y if ∂rK is the image of an (n− 1)-polychain in Y under ι. Set

H̃n(X,Y ) = {n-polycycles in X relative to Y }/ 'Y .

The properties of the face homology of topological spaces stated above directly
extend to the face homology of topological pairs.

3.3. Face homology versus singular homology

In this section, we construct two natural transformations [−] : H̃∗ → H∗ and

〈−〉 : H∗ → H̃∗ relating face homology to singular homology.

3.3.1. Preliminaries. For an integer n ≥ 0, the symbol ∆n denotes the stan-
dard n-simplex that is the convex hull of the standard basis (e0, . . . , en) of Rn+1.
We endow ∆n with orientation induced by the order of its vertices, i.e. the orien-
tation represented by the basis (−−→e0e1,

−−→e1e2, . . . ,
−−−−→en−1en) in the tangent space of ∆n

at any point. Each subset A = {i0, i1, . . . , ir} of {0, . . . , n} with i0 < i1 < · · · < ir
and 0 ≤ r ≤ n determines an affine map eA : ∆r → ∆n carrying the vertices
e0, e1, . . . , er of ∆r to the vertices ei0 , ei1 , . . . , eir of ∆n, respectively; the image of
the map eA is the combinatorial face of ∆n corresponding to A.

A singular n-simplex in a topological space X is a continuous map ∆n → X. A
singular n-chain in X is a finite formal linear combination of singular n-simplices
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with coefficients in K. The boundary of a singular n-simplex σ : ∆n → X is the
singular (n− 1)-chain

(3.3.1) ∂σ =

n∑
a=0

(−1)a · σeâ where â = {0, 1, . . . , n} \ {a}.

The boundary of singular simplices extends to singular chains by linearity. The
modules of singular chains together with the boundary homomorphisms form the
singular chain complex C∗(X) of X. Its homology is the singular homology H∗(X)
of X (with coefficients in K).

3.3.2. The transformation [−]. Consider an n-dimensional oriented mani-
fold with faces K. Each weight u : π0(K)→ K determines a homology class

[K,u] =
∑
C

u(C)
[
C
]
∈
⊕
C

Hn(C, ∂C) = Hn(K, ∂K)

where C runs over all connected components of K and [C] ∈ Hn(C, ∂C) is the
fundamental class of C. We say that a partition ϕ on K is compatible with u if for
any principal face P of K,

(3.3.2)
∑
Q

deg(ϕP,Q)u(KQ) = 0

where Q runs over all (principal) faces of K of the same type as P and KQ is the
connected component of K containing Q.

Lemma 3.3.1. Let ϕ be a partition on K compatible with a weight u : π0(K)→
K. Then there is a unique homology class [Kϕ, u] ∈ Hn(Kϕ) whose image in
Hn(Kϕ, (∂K)ϕ) is equal to the image of [K,u] under the map Hn(K, ∂K) →
Hn(Kϕ, (∂K)ϕ) induced by the projection K → Kϕ.

Proof. Consider the commutative diagram

Hn(∂K) //

π∗

��

Hn(K) //

π∗

��

Hn(K, ∂K)
∂∗ //

π∗

��

Hn−1(∂K)

π∗

��

Hn ((∂K)ϕ) // Hn (Kϕ) // Hn (Kϕ, (∂K)ϕ)
∂∗ // Hn−1 ((∂K)ϕ) ,

where the vertical maps are induced by the projection π : K → Kϕ and each row
is a part of the long exact sequence of a topological pair. We have Hn((∂K)ϕ) = 0
since (∂K)ϕ is an (n−1)-dimensional polyhedron. Hence, it is enough to show that

π∗∂∗([K,u]) = 0 ∈ Hn−1 ((∂K)ϕ) .

Consider the commutative square

∂∗([K,u]) ∈ Hn−1(∂K)
j
//

π∗

��

Hn−1 (∂K,Kn−2)

π∗

��

Hn−1 ((∂K)ϕ)
jϕ
// Hn−1 ((∂K)ϕ, (Kn−2)ϕ)

where j and jϕ are the inclusion homomorphisms. Since (Kn−2)ϕ is an (n − 2)-
dimensional polyhedron, Ker jϕ = 0 and it suffices to prove that jϕπ∗∂∗([K,u]) = 0
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or, equivalently, that π∗j∂∗([K,u]) = 0. We have

∂∗([K,u]) =
∑
C

u(C)∂∗([C]) =
∑
C

u(C)[∂C]

where the sum runs over the connected components C of K. Then

j∂∗([K,u]) =
∑
C

u(C)
∑
P⊂C

[P ] =
∑
P

u(KP ) [P ]

where P runs over all principal faces of K and KP is the connected component
of K containing P . Pick a face Pi ∈ i in each type i of principal faces of K. Then

π∗j∂∗([K,u]) =
∑
P

u(KP )π∗([P ])

=
∑
i

∑
Q∈i

u(KQ)π∗([Q])

=
∑
i

∑
Q∈i

u(KQ)π∗
(

deg(ϕPi,Q) · (ϕPi,Q)∗([Pi])
)

=
∑
i

(∑
Q∈i

u(KQ) deg(ϕPi,Q)
)
π∗ ([Pi]) = 0

where at the last step we use the compatibility condition (3.3.2). �

It follows from the definitions that a polychain (K,ϕ, u, κ) in a topological
space X is a polycycle if and only if u and ϕ are compatible in the sense of (3.3.2).
Therefore, given an n-polycycle K = (K,ϕ, u, κ) in X, Lemma 3.3.1 gives the
homology class [Kϕ, u] ∈ Hn(Kϕ). Since the map κ : K → X is compatible with ϕ,
it induces a continuous map Kϕ → X denoted by κϕ. We define

[K] = (κϕ)∗([Kϕ, u]) ∈ Hn(X).

The homology class [K] can be represented by explicit singular cycles which
are best described in terms of locally ordered triangulations. A local order on a
triangulation T of a topological space is a binary relation on the set of vertices
of T which restricts to a total order on the set of vertices of any simplex of T .
For example, any total order on the set of vertices of T is a local order on T . A
triangulation endowed with a local order is locally ordered. We say that a locally
ordered smooth triangulation T of K fits the partition ϕ if, for any faces F,G of K
of the same type, the identification map ϕF,G : F → G is a simplicial isomorphism
preserving the local order on the vertices. To construct such a locally ordered
triangulation one can take a triangulation T of K provided by Lemma 3.1.1 and lift
an arbitrary total order ≤ on the set of vertices of Tϕ to T . More precisely, denote
by π : K → Kϕ the canonical projection and, for any vertices a, b ∈ T , declare that
a ≤ b if π(a) ≤ π(b). Since any simplex of T projects isomorphically onto a simplex
of Tϕ, this gives a local order on T which, obviously, fits ϕ.

Pick a locally ordered smooth triangulation T of K which fits ϕ. Each r-simplex
∆ of T with r ≥ 0 determines a singular simplex in K denoted by σ∆ and obtained
as the composition of the affine isomorphism ∆r → ∆ preserving the order of the
vertices with the inclusion ∆ ↪→ K. We define the fundamental n-chain

(3.3.3) σ = σ(T, u) =
∑
∆

ε∆u(K∆)σ∆ ∈ Cn(K)
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where ∆ runs over all n-simplices of T , K∆ is the connected component of K
containing ∆, ε∆ = +1 if the orientation of ∆ induced by that of K is compatible
with the order of the vertices of ∆ and ε∆ = −1 otherwise. Clearly, the image of σ in
Cn(K, ∂K) is a relative n-cycle representing [K,u]. Projecting σ to Kϕ, we obtain
a singular n-chain σϕ ∈ Cn(Kϕ). The compatibility of ϕ and u implies that σϕ is
an n-cycle. Therefore [σϕ] ∈ Hn(Kϕ) satisfies the requirements of Lemma 3.3.1 so
that [Kϕ, u] = [σϕ]. It follows that [K] is represented by the singular n-cycle

(κϕ)∗(σϕ) = κ∗(σ) =
∑
∆

ε∆u(K∆)κσ∆ ∈ Cn(X).

Lemma 3.3.2. The formula 〈K〉 7→ [K] defines a linear map [−] : H̃n(X) →
Hn(X). Moreover, [−] is a natural transformation from H̃n to Hn.

Proof. It follows from the definitions that [K] ∈ Hn(X) depends only on the
diffeomorphism class of K, that [K] = [red(K)], and that [kK] = k[K] for any k ∈ K.
Moreover, [K1 t K2] = [K1] + [K2] for any n-polycycles K1,K2 in X. Therefore,
to prove the first claim of the lemma, it is enough to show that [∂L] = 0 for any
(n + 1)-polychain L = (L,ψ, v, λ) in X. For this, pick a locally ordered smooth
triangulation T of L that fits ψ and consider the singular chain

σ = σ(T, v) =
∑
∆

ε∆v(L∆)σ∆ ∈ Cn+1(L).

Here ∆ runs over all (n+ 1)-dimensional simplices of T , ε∆ is the sign determined
by the orientation of L and the order of the vertices of ∆, and L∆ is the component
of L containing ∆. Projecting σ to Lψ we obtain a singular chain σψ in Lψ. Next we
consider the n-polycycle ∂L = (L∂ , ψ∂ , v∂ , λ∂). The triangulation T of L induces a
triangulation T ∂ of L∂ . The local order on the set of vertices of T restricts to a local
order on the set of vertices of T ∂ . Consider the fundamental n-chain τ = σ(T ∂ , v∂)
in L∂ as defined before the statement of the lemma. Projecting τ to the quotient
space (L∂)ψ∂ we obtain a singular n-cycle τψ∂ representing[

(L∂)ψ∂ , u
∂
]
∈ Hn

(
(L∂)ψ∂

)
.

The natural map ι : L∂ → L induces a map ιψ : (L∂)ψ∂ → Lψ carrying τψ∂ to ∂σψ.

By definition, λ∂ = λι : L∂ → X. Therefore (λ∂)ψ∂ = λψιψ : (L∂)ψ∂ → X where
λψ : Lψ → X is the map induced by λ : L→ X. Hence,

[∂L] =
(
(λ∂)ψ∂

)
∗([τψ∂ ]) = (λψιψ)∗([τψ∂ ]) = (λψ)∗([∂σψ]) = 0.

To prove the second claim of the lemma, consider a continuous map f : X → Y .
For any n-polycycle K = (K,ϕ, u, κ) in X, we have

f∗ ([K]) = f∗(κϕ)∗([Kϕ, u]) = (fκϕ)∗([Kϕ, u]) =
(
(fκ)ϕ

)
∗([Kϕ, u]) = [f∗(K)]

since f∗(K) = (K,ϕ, u, fκ) by definition. �

3.3.3. The transformation 〈−〉. Let X be a topological space and let n ≥ 0
be an integer. We associate with each singular n-chain σ in X an n-polychain P(σ)
in X. Pick an expansion σ =

∑
i kiσi, where i runs over a finite set of indices,

ki ∈ K, and {σi}i are singular n-simplices in X. Let K be the manifold with faces
obtained as a disjoint union of copies (∆n)i of ∆n numerated by all i. We define a
partition ϕ on K as follows: a face F of (∆n)i corresponding to a set A ⊂ {0, . . . , n}
and a face F ′ of (∆n)i′ corresponding to a set A′ ⊂ {0, . . . , n} are declared to be
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of the same type if, and only if, A and A′ have the same cardinality r ≤ n+ 1, and
σieA = σi′eA′ : ∆r−1 → X (where eA, eA′ are the maps defined in Section 3.3.1).
Then we set ϕF,F ′ = eA′e

−1
A : F → F ′. Clearly, the map κ =

∐
i σi : K → X

is compatible with ϕ. We define a weight u : π0(K) → K by u((∆n)i) = ki for
all i. The tuple (K,ϕ, u, κ) is an n-polychain in X depending on the choice of the
expansion σ =

∑
i kiσi. However, the polychain P(σ) = red(K,ϕ, u, κ) does not

depend on this choice. Indeed, any two expansions of σ may be related by the
following operations: replacement of kσ• + lσ• by (k + l)σ• for any k, l ∈ K and
any singular n-simplex σ• in X; addition of a term 0σ• for an arbitrary singular
n-simplex σ• in X; the inverse operations. It is easy to see that P(σ) is preserved
under these transformations. By definition, if σ = 0, then P(σ) = ∅. The face
homology class 〈P(σ)〉 of the polychain P(σ) will be denoted by 〈σ〉.

Lemma 3.3.3. If σ is a cycle, then P(σ) is a polycycle. The formula [σ] 7→ 〈σ〉,
applied to singular n-cycles in X, defines a linear map 〈−〉 : Hn(X) → H̃n(X).

Moreover, 〈−〉 is a natural transformation from Hn to H̃n.

Proof. We check first that for any singular n-chain σ in X,

(3.3.4) ∂rP(σ) ∼= P(∂σ).

Pick an expansion σ =
∑
i kiσi such that the simplices {σi}i are pairwise distinct

and ki 6= 0 for all i. Then the associated polychain (K,ϕ, u, κ) is reduced and
P(σ) = (K,ϕ, u, κ). A connected component P of ∂P(σ) = (K∂ , ϕ∂ , u∂ , κ∂) is
nothing but a principal face of (∆n)i ⊂ K for some i = i(P ) corresponding to
the complement of a singleton aP ∈ {0, . . . , n}. By the definition of u∂ , we have
u∂(P ) = ki(P ). We compute red+(∂P(σ)) as described in Section 3.2.1. Pick a

representative P for each type of connected components of K∂ , and let K∂
+ ⊂ K∂

be the union of these representatives. Restricting ϕ∂ and κ∂ to K∂
+ we obtain a

partition ϕ∂+ on K∂
+ and a compatible map κ∂+ : K∂

+ → X. The weight u∂+ on K∂
+

is evaluated on each component P of K∂
+ by

u∂+(P ) =
∑
Q

deg(ϕP,Q)u∂(Q) =
∑
Q

(−1)aP+aQki(Q) = (−1)aP
∑
Q

(−1)aQki(Q)

where Q runs over all components of K∂ of the same type as P . Note that∑
Q(−1)aQki(Q) is the total coefficient of the singular simplex σi(P )eâP : ∆n−1 → X

in ∂σ. Also, (−1)aP is the degree of eâP : ∆n−1 → P (recall that ∆n−1 is oriented as
in Section 3.3.1 while P ⊂ ∂(∆n)i inherits orientation from (∆n)i where i = i(P )).
We conclude that the polychain red+(∂P(σ)) consists of P(∂σ) and eventually sev-
eral connected components of weight zero. Hence

∂rP(σ) = red(∂P(σ)) = red0 red+(∂P(σ)) ∼= P(∂σ).

This proves (3.3.4). The first assertion of the lemma follows.
Next we claim that

(3.3.5) P(σ + τ) ' P(σ) t P(τ)

for any singular n-cycles σ, τ in X. To see this, pick expansions σ =
∑
i kiσi,

τ =
∑
j ljτj and let K = (K,ϕ, u, κ), L = (L,ψ, v, λ) be the associated polychains,

respectively. Consider the cylinder polychain K t L ∼= K t L (as defined in the
proof of Lemma 3.2.2) and modify its partition by additionally declaring that for
any face F of (∆n)i ⊂ K corresponding to A ⊂ {0, . . . , n} and for any face G of
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(∆n)j ⊂ L corresponding toB ⊂ {0, . . . , n} such that σieA = τjeB , the faces F×{0}
and G × {0} of K t L are of the same type, and the corresponding identification
map is eBe

−1
A × id{0} : F × {0} → G × {0}. The resulting (n + 1)-polychain, M,

in X satisfies

red+ ∂M ∼= red+(K) t red+(L) t red+(−R) t (a polychain with zero weight)

where R is the polychain associated with the expansion
∑
i kiσi +

∑
j ljτj of σ+ τ .

Hence, ∂rM ∼= P(σ) t P(τ) t (−P(σ + τ)) and our claim follows.
If K has no zero-divisors, then P(kσ) ∼= kP(σ) for any singular n-chain σ in X

and any non-zero k ∈ K. For an arbitrary K and all k ∈ K, we have

(3.3.6) P(kσ) ∼= red(kP(σ)) ' kP(σ).

Equalities (3.3.4) – (3.3.6) imply that the formula [σ] 7→ 〈P(σ)〉 defines a linear

map 〈−〉 : Hn(X)→ H̃n(X).
To prove the last claim of the lemma, consider a continuous map f : X → Y .

Let σ be a singular n-cycle in X, and let K = (K,ϕ, u, κ) be the n-polycycle
associated to an expansion

∑
i kiσi of σ. The n-polycycle associated to the ex-

pansion
∑
i ki(fσi) of f∗(σ) has the form K′ = (K,ϕ′, u, fκ) and differs from

f∗(K) = (K,ϕ, u, fκ) only in the partition. Modifying appropriately the parti-

tion of the cylinder polychain f∗(K), we obtain an (n+ 1)-polychain M in X such
that

red+ ∂M = red+ f∗(K) t red+(−K′) t (a polychain with zero weight).

We deduce that ∂rM = red f∗(K) t red(−K′) and

f∗(〈P(σ)〉) = f∗(〈K〉) = 〈f∗(K)〉 = 〈K′〉 = 〈P(f∗(σ))〉 . �

The next theorem implies that Hn(X) is canonically isomorphic to a direct

summand of H̃n(X).

Theorem 3.3.4. We have [−] ◦ 〈−〉 = id : Hn(X)→ Hn(X).

Proof. Let σ =
∑
i kiσi be a singular n-cycle in X and let P(σ) = (K,ϕ, u, κ)

be the corresponding reduced n-polycycle. Then

[〈[σ]〉] = [P(σ)] = (κϕ)∗ ([Kϕ, u]) =
[∑

i

kiσi

]
= [σ] ∈ Hn(X).

Here the third equality is obtained by considering the tautological locally ordered
smooth triangulation T of K and the corresponding fundamental n-chain σ(T, u)
(see the paragraph preceding Lemma 3.3.2). �

3.3.4. Cross product re-examined. The following lemma shows that the

transformation [−] : H̃∗ → H∗ carries the cross product × in face homology to the
standard cross product × in singular homology.

Lemma 3.3.5. For any topological spaces X, Y , the following diagram com-
mutes:

(3.3.7) H̃∗(X)× H̃∗(Y )
×
//

[−]×[−]

��

H̃∗(X × Y )

[−]

��

H∗(X)×H∗(Y )
×
// H∗(X × Y ).
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We first recall the definition of the map × : H∗(X) × H∗(Y ) → H∗(X × Y )
and then prove Lemma 3.3.5. Fix integers p, q ≥ 0. Any p-element subset S of
{1, . . . , p+ q} determines non-decreasing maps

α = αS : {0, . . . , p+ q} → {0, . . . , p} and β = βS : {0, . . . , p+ q} → {0, . . . , q}

such that α(0) = β(0) = 0 and for any i = 1, . . . , p+ q,

(α(i), β(i)) =

{ (
α(i− 1) + 1, β(i− 1)

)
if i ∈ S(

α(i− 1), β(i− 1) + 1
)

if i 6∈ S.

Let ωS ⊂ ∆p×∆q be the convex hull of the set
{

(eα(0), eβ(0)), . . . , (eα(p+q), eβ(p+q))
}

.

Lemma 3.3.6. The set ωS is an embedded (p+ q)-simplex in ∆p×∆q with ver-

tices {(eα(i), eβ(i))}p+qi=0 . The simplices {ωS}S and their faces form a triangulation
of ∆p ×∆q.

Proof. This lemma is well known but we give a proof for completeness. For
n ≥ 0, denote by An the affine space formed by the points of Rn+1 with sum of
coordinates 1. The basis (e0, . . . , en) of Rn+1 is an affine basis of An and ∆n ⊂ An.
Consider the basis (v1, . . . , vp) = (−−→e0e1,

−−→e1e2, . . . ,
−−−−→ep−1ep) of the vector space un-

derlying Ap and the basis (vp+1, . . . , vp+q) = (−−→e0e1,
−−→e1e2, . . . ,

−−−−→eq−1eq) of the vector
space underlying Aq. Then (v1, . . . , vp+q) is a basis of the vector space underlying
the product affine space Ap × Aq.

Recall that a (p, q)-shuffle is a permutation s of {1, . . . , p+ q} such that

s(1) < s(2) < · · · < s(p) and s(p+ 1) < · · · < s(p+ q).

Any p-element subset S of {1, . . . , p + q} determines a unique (p, q)-shuffle s such
that S = s({1, . . . , p}). The first claim of the lemma follows from the fact that the
vector basis (vs−1(1), . . . , vs−1(p+q)) underlies the set of vertices of ωS ⊂ Ap × Aq:
(3.3.8)

(eα(0), eβ(0))
�vs−1(1)

// (eα(1), eβ(1))
� vs−1(2)

// · · · �vs−1(p+q)
// (eα(p+q), eβ(p+q)).

To prove the second claim, observe that given n+1 affinely independent points

f0, . . . , fn in an n-dimensional affine space, an arbitrary point f0 +
∑n
i=1 ti

−−−−→
fi−1fi of

this space (with t1, . . . , tn ∈ R) belongs to the affine simplex spanned by f0, . . . , fn
if and only if 1 ≥ t1 ≥ · · · ≥ tn ≥ 0. Therefore any point z ∈ ∆p × ∆q expands
uniquely as

z = (e0, e0) + z1v1 + · · ·+ zp+qvp+q

with

1 ≥ z1 ≥ · · · ≥ zp ≥ 0 and 1 ≥ zp+1 ≥ · · · ≥ zp+q ≥ 0.

By the same observation and (3.3.8), the inclusion z ∈ ωS for a p-element subset S
of {1, . . . , p+ q} holds if and only if

zs−1(1) ≥ zs−1(2) ≥ · · · ≥ zs−1(p+q)

where s is the (p, q)-shuffle determined by S. Therefore ∆p×∆q is the union of the
simplices {ωS}S , and any two of these simplices meet along a common face. �

For each p-element subset S ⊂ {1, . . . , p+q}, we turn ωS into a singular simplex
in ∆p ×∆q by sending the ordered vertices e0 < e1 < · · · < ep+q of ∆p+q to

(3.3.9) (eα(0), eβ(0)) < (eα(1), eβ(1)) < · · · < (eα(p+q), eβ(p+q))



48 3. FACE HOMOLOGY

respectively. Summing up over all such S we obtain a singular chain

(3.3.10) ωp,q =
∑
S

εS ωS ∈ Cp+q(∆p ×∆q)

where εS is the sign comparing the orientation in ωS determined by the order of
its vertices (3.3.9) with the product orientation in ∆p ×∆q. The Eilenberg–Zilber
chain map

(3.3.11) EZ : C∗(X)⊗ C∗(Y ) −→ C∗(X × Y )

is defined by EZ(σ ⊗ τ) = (σ × τ)∗(ωp,q) for any singular simplices σ : ∆p → X
and τ : ∆q → Y . Here

(σ × τ)∗ : C∗(∆
p ×∆q) −→ C∗(X × Y )

is the chain map induced by σ × τ : ∆p ×∆q → X × Y .
The cross product of singular homology classes x ∈ Hp(X) and y ∈ Hq(Y )

is defined by taking any cycles σ ∈ Cp(X) and τ ∈ Cq(Y ) representing x and y
respectively, and letting x× y ∈ Hp+q(X×Y ) be the homology class of EZ(σ⊗ τ).

Proof of Lemma 3.3.5. Let K = (K,ϕ, u, κ) be a p-polycycle in X and let
L = (L,ψ, v, λ) be a q-polycycle in Y . We must prove that

(3.3.12) [K× L] = [K]× [L] ∈ Hp+q(X × Y ).

Fix a locally ordered smooth triangulation T of K which fits ϕ and consider the
fundamental p-chain

∑
i εi u(Ki)σi ∈ Cp(K) where i runs over p-simplices of T , σi :

∆p → K is the smooth singular simplex determined by i, εi is the sign comparing
the orientation induced by the order of the vertices of i to the orientation of K,
and Ki is the connected component of K containing i. Then

[K] =
[∑

i

εi u(Ki) (κ ◦ σi)
]
∈ Hp(X)

where the square brackets on the right-hand side stand for the homology class of
a singular cycle. Similarly, fixing a locally ordered smooth triangulation W of L
which fits ψ, we obtain

[L] =
[∑

j

εj v(Lj) (λ ◦ τj)
]
∈ Hq(Y )

where j runs over q-simplices of W , τj : ∆q → L is the smooth singular simplex
determined by j, εj is the sign comparing the orientation induced by the order of
the vertices of j to the orientation of L, and Lj is the component of L containing j.
By the definition of the cross product in singular homology,

[K]× [L] =
[∑
i,j

εi εj u(Ki) v(Lj)EZ(κσi ⊗ λτj)
]

=
[∑
i,j,S

εi εj εS u(Ki) v(Lj) (κσi × λτj)ωS
]

(3.3.13)

where S runs over p-element subsets of {1, . . . , p+ q}.
For any simplices i, j as above, we push forward via σi × τj the triangulation

of ∆p × ∆q provided by Lemma 3.3.6 to a triangulation of i × j ⊂ K × L. This
gives a smooth triangulation Z of K × L. The set of vertices Z0 of Z is the
cartesian product of the sets of vertices T 0 and W 0 of T and W , respectively; we
endow Z0 with the product of the binary relations on T 0 and W 0 determined by
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the local orders on T and W . This defines a local order on Z which fits the partition
ϕ×ψ. The simplices of Z can be identified with the triples (i, j, S) as above, and the
corresponding singular simplices in K×L are the maps (σi×τj)ωS : ∆p+q → K×L.
(Here we use the fact that the order (3.3.9) of the vertices of ωS is given by the
product binary relation on the set of vertices of ∆p×∆q determined by the natural
orders on the sets of vertices of ∆p and ∆q.) Let εi,j,S be the sign comparing the
orientation of the simplex (i, j, S) induced by the order of the vertices to the product
orientation of K × L. Let (K × L)i,j,S be the component of K × L containing the
simplex (i, j, S). Then

(3.3.14) [K× L] =
[∑
i,j,S

εi,j,S · (u× v)
(
(K × L)i,j,S

)
·
(
(κ× λ) ◦ (σi × τj)ωS

)]
.

Clearly,

(u× v)
(
(K × L)i,j,S

)
= u(Ki) v(Lj).

Note that εi,j,S = εiεjεS since εiεj is the degree of the diffeomorphism σi × τj :
∆p×∆q → i×j with respect to the product orientation in ∆p×∆q and the product
orientation in K × L restricted to i× j. Comparing (3.3.13) to (3.3.14), we obtain
(3.3.12). �

3.3.5. Remarks. 1. Though we shall not need it in the sequel, note that
the sign εS in (3.3.10) can be computed explicitly: εS = (−1)nS where nS is the
number of pairs i < j with i ∈ {1, . . . , p+ q} \S and j ∈ S. Indeed, in the notation
introduced in the proof of Lemma 3.3.6, the orientation of ωS determined by the
sequence (3.3.9) is represented by the (p+ q)-vector

vs−1(1) ∧ · · · ∧ vs−1(p+q) = (−1)mv1 ∧ · · · ∧ vp+q
where s is the (p, q)-shuffle associated with S and m is the number of inversions
in s. Therefore εS = (−1)m and it remains to observe that m = nS .

The definition of nS may be also reformulated in terms of the maps α = αS and
β = βS . Namely, nS is the number of pairs i < j such that β(i) = β(i− 1) + 1 and
α(j) = α(j − 1) + 1. This implies the following formula for nS used, for example,
in [FHT, Section 4(b)]:

nS =
∑

1≤i<j≤p+q

(
β(i)− β(i− 1)

) (
α(j)− α(j − 1)

)
.

2. By a celebrated result of Thom, there are topological spaces X and integers
n > 0 such that some n-dimensional singular homology classes of X with coefficients
in K = Z are not realizable by closed singular manifolds. For such X and n, the
natural map from the n-dimensional oriented bordism group Ωn(X) to Hn(X),
carrying a closed singular manifold κ : M → X to κ∗([M ]), is not surjective. This

map splits as a composition of the map Ωn(X)→ H̃n(X) described in Remark 3.2.7

with the surjective map [−] : H̃n(X) → Hn(X). Therefore, for such X and n, the

map Ωn(X)→ H̃n(X) is not surjective.
3. The face homology seems to be difficult to compute. As a consequence, the

authors do not know whether the transformation [−] : H̃∗ → H∗ is injective, and,

equivalently, whether 〈−〉 : H∗ → H̃∗ is surjective. In fact, the authors even do not
know whether the face homology of a point is trivial in positive degrees.

4. The constructions and results of this section easily extend to the face ho-
mology of topological pairs (cf. Remark 3.2.7).
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3.4. Smooth polychains

We reformulate face homology of the path spaces of manifolds in terms of
smooth polychains. We start by studying polychains in manifolds.

3.4.1. Polychains in manifolds. Recall from Section 3.1.1 that a map κ
from an n-dimensional manifold with faces K to a smooth m-dimensional mani-
fold M (possibly, with boundary) is said to be smooth if restricting κ to any local
coordinate systems in K and M we obtain a map that extends to a C∞-map from
an open subset of Rn to Rm. If N ⊂ K is a union of (some) faces of K, then we
call a map N → M smooth whenever its restrictions to all faces of K contained
in N are smooth. Such a map N →M is necessarily continuous. This terminology
applies in particular to N = ∂K.

Lemma 3.4.1. Let K be a manifold with faces. Any smooth map ∂K → M
extends to a smooth map from a neighborhood of ∂K in K to M .

Proof. Using a partition of unity on K and local coordinates on M , we easily
reduce the lemma to the case where K = Rn+ = [0,∞)n with n ≥ 0 and M = R.
We need to prove that every function f : ∂Rn+ → R whose restrictions to all
proper faces of Rn+ are smooth extends to a smooth function on Rn+. We exhibit
one such extension explicitly. For a subset S of the set {1, . . . , n} and a point
x = (x1, . . . , xn) ∈ Rn+ denote by xS the point of Rn+ whose i-th coordinate is xi if
i ∈ S and zero otherwise. If S 6= {1, . . . , n}, i.e. if S is a proper subset of {1, . . . , n},
then xS ∈ ∂Rn+. Set

(3.4.1) f(x) =
∑

S({1,...,n}

(−1)card(S)+n+1f(xS).

Each function x 7→ f(xS) is smooth because it is a composition of f with the
projection of Rn+ onto its proper face. Therefore the function f : Rn+ → R is smooth.

Moreover, it satisfies f(x) = f(x) for all x ∈ ∂Rn+. Indeed, pick i ∈ {1, . . . , n} such
that xi = 0 and observe that each term in (3.4.1) corresponding to S with i /∈ S
cancels with the term corresponding to S ∪ {i} provided the latter set is proper.
This leaves only the term f(xS) = f(x) determined by S = {1, . . . , n} \ {i}. �

Lemma 3.4.2. Let κ : K → M be a continuous map from a manifold with
faces K to a smooth manifold M . Then any homotopy of κ|∂K : ∂K → M to a
smooth map extends to a homotopy of κ to a smooth map K →M .

Proof. Observe first that if κ|∂K : ∂K → M is smooth, then there is a
homotopy of κ rel ∂K to a smooth map K → M . Indeed, Lemma 3.4.1 yields an
extension of κ|∂K : ∂K → M to a smooth map U → M where U is a collar of
∂K in K. The latter map obviously extends to a continuous map κ′ : K → M
homotopic to κ rel ∂K. Since κ′|U is smooth and K \ U is a compact subset of the
smooth manifold K \∂K, there is a homotopy of κ′ to a smooth map K →M , and
this homotopy may be chosen to be constant in a neighborhood of ∂K in U . The
resulting smooth map K →M is homotopic to κ rel ∂K.

To prove the lemma, take an arbitrary (continuous) extension of the given
homotopy of κ|∂K to a homotopy of κ, and compose it with a homotopy rel ∂K of
the resulting map K → M to a smooth map as in the previous paragraph. Next,
using a collar of ∂K in K, deform the composed homotopy of κ into a homotopy
satisfying the conditions of the lemma. �
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As an exercise, the reader may deduce from Lemma 3.4.2 (by an inductive
construction on the faces of K) that any continuous map K →M is homotopic to
a smooth map.

A polychain (K,ϕ, u, κ) in M is smooth if the map κ : K →M is smooth. We
explain now how to deform arbitrary polychains in M into smooth polychains. For
the notion of a deformation of a polychain in M , see Section 3.2.5. We explain first
how to extend deformations. Let N ⊂ K consist of some faces of K. We say that
a homotopy {(κ|N )t : N →M}t∈I of κ|N is compatible with the partition ϕ if

(κ|N )t|G ◦ ϕF,G = (κ|N )t|F
for any t ∈ I and any faces of the same type F,G ⊂ N .

Lemma 3.4.3. Let K = (K,ϕ, u, κ) be a polychain in M and let N be a
union of faces of K. Let {(κ|N )t : N → M}t∈I be a homotopy of κ|N compat-
ible with ϕ such that (κ|N )1 : N → M is smooth. Then there is a deformation
{Kt = (K,ϕ, u, κt)}t∈I of K0 = K such that K1 is smooth and for all t ∈ I,

κt|N = (κ|N )t : N →M.

Proof. For any integer r, denote (as in Section 3.1.1) by Kr the union of all
faces of K of dimension ≤ r. Recursively in r = −1, 0, . . ., we construct a homotopy
(κ|Kr )t of κ|Kr to a smooth map (κ|Kr )1 : Kr → M . For r = −1, there is nothing
to do since K−1 = ∅. The induction step goes as follows. For each type of r-
dimensional faces of K, select a representative face F so that if at least one face of
the given type lies in N , then F ⊂ N . If F ⊂ N , then set (κ|F )t = (κ|N )t|F for
all t. If F * N , then by Lemma 3.4.2 there is a homotopy of κ|F to a smooth map
extending the homotopy of κ on ∂F ⊂ Kr−1 obtained at the previous step. The
homotopy on the selected r-dimensional faces uniquely extends to a homotopy of κ
on Kr compatible with ϕ. For r = dim(K), we obtain the required deformation
of κ. �

Lemma 3.4.4. For any polychain K = (K,ϕ, u, κ) in M , there is a deformation
{Kt = (K,ϕ, u, κt)}t∈I of K0 = K such that K1 is smooth and κt|F = κ|F for all
t ∈ I and all faces F of K on which κ is smooth.

Proof. This is a special case of Lemma 3.4.3 where N is the union of all faces
of K on which κ is smooth and {(κ|N )t}t∈I is the constant homotopy. �

We can now reformulate the face homology of M in terms of smooth polychains.
Note that if a polychain K in M is smooth, then so are the polychains redK,
∂K, and ∂rK. Disjoint unions of smooth polychains are smooth. Applying the
definitions of Section 3.2.4 to X = M but considering only smooth polycycles and

smooth polychains we obtain smooth face homology H̃s
∗(M).

Theorem 3.4.5. The natural linear map H̃s
∗(M)→ H̃∗(M) is an isomorphism.

Proof. Lemmas 3.2.3 and 3.4.4 imply that any polycycle in M is homologous
to a smooth polycycle. This proves the surjectivity of the map in the statement of
the theorem. To prove the injectivity it suffices to show that, for any homologous
reduced smooth n-polychains K1, K2 in M there are smooth (n + 1)-polychains
R′1,R

′
2 in M such that K1 t ∂rR′1 ∼= K2 t ∂rR′2. By assumption, there are (n+ 1)-

polychains R1,R2 in M and a diffeomorphism f : K1 t ∂rR1 → K2 t ∂rR2. For
i = 1, 2, set (Pi, ϕi, ui, κi) = Ki t ∂rRi and let Ki ⊂ Pi be the union of the
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components of Pi underlying Ki. Lemma 3.4.4 yields a homotopy {κt1 : P1 →M}t
of κ0

1 = κ1 to a smooth map κ1
1 in the class of maps compatible with the partition ϕ1,

which is constant on all faces of P1 on which κ1 is smooth. In particular, this
homotopy is constant on K1. Consider the homotopy {κt2 = κt1f

−1 : P2 → M}t of
κ0

2 = κ2. This homotopy is compatible with the partition ϕ2 and is constant on K2

(because κ1 = κ2f is smooth on f−1(K2)). Clearly, f : P1 → P2 is a diffeomorphism
of the smooth polychains (P1, ϕ1, u1, κ

1
1) and (P2, ϕ2, u2, κ

1
2 = κ1

1f
−1). For i = 1, 2,

the polychain (Pi, ϕi, ui, κ
1
i ) is obtained from Ki t ∂rRi by a deformation which is

constant on Ki and transforms ∂rRi into a smooth polychain. To finish the proof,
we need only to show that this deformation of ∂rRi extends to a deformation of Ri
into a smooth polychain. This is done in 3 steps. First of all, applying Lemma 3.4.3
to K = red+ ∂Ri and taking for N the union of all connected components of non-
zero weight we obtain that our deformation of ∂rRi = red0 red+ ∂Ri extends to a
deformation of red+ ∂Ri into a smooth polychain. The latter deformation induces a
deformation of ∂Ri into a smooth polychain. One more application of Lemma 3.4.3
allows us to extend the latter deformation to a deformation of Ri into a smooth
polychain R′i. Then K1 t ∂rR′1 ∼= K2 t ∂rR′2. �

3.4.2. Polychains in path spaces. Pick two points ?, ?′ in a smooth mani-
fold M (possibly, ? = ?′ and ∂M 6= ∅ ). A path in M from ? to ?′ is a continuous
map I = [0, 1]→M carrying 0 to ? and 1 to ?′. Let Ω = Ω(M,?, ?′) be the space of
such paths with compact-open topology; we call Ω the path space of M . Note that
a map σ from a topological space K to Ω is continuous if and only if the adjoint
map σ̃ : K×I →M , carrying any pair (k ∈ K, s ∈ I) to σ(k)(s) ∈M is continuous;
see, for example, [FuR, Section 1.2.7].

Given a subspace X of Ω, we call a map from a manifold with faces K to X
smooth if the adjoint map K × I → M is smooth in the sense of Section 3.4.1. A
polychain K = (K,ϕ, u, κ) in X is smooth if κ : K → X is smooth. The definitions
of Section 3.2.4 restricted to smooth polycycles and smooth polychains in X, yield

the smooth face homology H̃s
∗(X) of X. In the next theorem, X = Ω.

Theorem 3.4.6. The natural linear map H̃s
∗(Ω)→ H̃∗(Ω) is an isomorphism.

Proof. We follow the lines of Section 3.4.1 with M replaced by Ω. First, we
show that given a manifold with faces K, any smooth map f : ∂K → Ω extends
to a smooth map from a neighborhood of ∂K in K to Ω. Indeed, the adjoint map
f̃ : ∂K × I → M extends to a smooth map ∂(K × I) → M by sending K × {0}
to ? and K ×{1} to ?′. By Lemma 3.4.1, the latter map extends to a smooth map
f : U →M for some neighborhood U of ∂(K × I) in K × I. Clearly, U ⊃ V × I for
a neighborhood V of ∂K in K. The map f |V×I is adjoint to a smooth map V → Ω
extending f .

Lemmas 3.4.2–3.4.4 remain true with M replaced by Ω. The proofs above apply
with the only difference that Lemma 3.4.1 should be replaced by the result of the
previous paragraph. The proof of Theorem 3.4.5 also works with M replaced by Ω.
This gives the desired result. �

In the case where ?, ?′ ∈ ∂M , the path space Ω = Ω(M,?, ?′) is homotopy
equivalent to a smaller space. Let Ω◦ = Ω◦(M,?, ?′) be the subspace of Ω consisting
of all paths α : I → M from ? to ?′ such that α−1(∂M) = ∂I. We call Ω◦ the
proper path space of (M,?, ?′).



3.4. SMOOTH POLYCHAINS 53

Lemma 3.4.7. The inclusion map Ω◦ ↪→ Ω is a homotopy equivalence.

Proof. We begin with an observation in set-theoretic topology. Consider a
topological pair Y ⊂ X and suppose that there is a homotopy {ft : X → X}t∈I of
the identity map f0 = idX such that ft(X) ⊂ Y for all t > 0. Then the inclusion
ι : Y ↪→ X is a homotopy equivalence and its homotopy inverse g : X → Y is
obtained from f1 by reducing the image to Y . Indeed, the family {ft : X → X}t is
a homotopy between f0 = idX and f1 = ιg. Since ftι(Y ) ⊂ Y for all t ∈ I, we have
the family of maps {ftι : Y → Y }t. This is a homotopy between idY and gι.

Using a tubular neighborhood of ∂M in M , we can easily construct a (smooth)
family of embeddings {Fs,t : M ↪→ M}s,t∈I such that Fs,t = idM if s ∈ {0, 1} or
t = 0, and Fs,t(M) ⊂ IntM = M \ ∂M for all other pairs (s, t). Given t ∈ I and a
path α : I → M from ? to ?′, we define a path αt : I → M by αt(s) = Fs,t(α(s))
for all s ∈ I. This gives a family of paths {αt}t∈I such that α0 = α and αt ∈ Ω◦ for
all t > 0. The formula ft(α) = αt defines a homotopy {ft : Ω→ Ω}t∈I of f0 = idΩ

such that ft(Ω) ⊂ Ω◦ for all t > 0. Now, the result of the previous paragraph
implies that the inclusion Ω◦ ↪→ Ω is a homotopy equivalence. �

Lemma 3.4.7 implies that H̃∗(Ω
◦) ' H̃∗(Ω). The following theorem computes

the face homology of Ω◦ and Ω in terms of smooth polychains in Ω◦.

Theorem 3.4.8. The natural linear map H̃s
∗(Ω

◦)→ H̃∗(Ω
◦) is an isomorphism.

Proof. Consider the homotopy {ft}t∈I of f0 = idΩ introduced in the proof of
Lemma 3.4.7 and set f = f1 : Ω→ Ω◦ ⊂ Ω. For any manifold with faces L and for

any map λ : L→ Ω, the adjoint map f̃tλ : L× I →M of ftλ is given by

f̃tλ(l, s) = ft(λ(l))(s) = λ(l)t(s) = Fs,t(λ(l)(s)) = Fs,t
(
λ̃(l, s)

)
.

Consequently, if λ is smooth, then ftλ : L→ Ω is smooth for all t ∈ I. We conclude
that for any smooth polychain L in Ω, the polychain f∗(L) in Ω◦ is smooth.

By the surjectivity of the map in Theorem 3.4.6, any polycycle K in Ω◦ is
homologous in Ω to a smooth polycycle K′ in Ω. Applying f , we obtain that f∗(K)
is homologous in Ω◦ to the smooth polycycle f∗(K

′). The homotopy {ft}t induces
a deformation of K into f∗(K) in Ω◦. Therefore K is homologous to f∗(K) in Ω◦.
Thus, K is homologous to f∗(K

′) in Ω◦. This proves the surjectivity of the natural

map H̃s
∗(Ω

◦) → H̃∗(Ω
◦). To prove the injectivity, consider two reduced smooth

n-polycycles K1, K2 in Ω◦ that are homologous in Ω◦. Then they are homologous
in Ω. By the injectivity of the map in Theorem 3.4.6, there are smooth (n + 1)-
polychains L1,L2 in Ω such that K1 t ∂rL1

∼= K2 t ∂rL2. Applying f we obtain

f∗(K1) t ∂r(f∗(L1)) ∼= f∗(K2) t ∂r(f∗(L2))

where f∗(K1), f∗(L1), f∗(K2), f∗(L2) are smooth polychains in Ω◦. So,

〈f∗(K1)〉 = 〈f∗(K2)〉 ∈ H̃s
n(Ω◦).

The homotopy {ft}t induces a smooth deformation of Ki into f∗(Ki) and therefore

〈Ki〉 = 〈f∗(Ki)〉 ∈ H̃s
n(Ω◦) for i = 1, 2. Hence 〈K1〉 = 〈K2〉 ∈ H̃s

n(Ω◦). This

completes the proof of the injectivity of the natural map H̃s
∗(Ω

◦)→ H̃∗(Ω
◦) and of

the theorem. �





CHAPTER 4

Operations on polychains

Throughout this chapter, M is an oriented smooth n-dimensional manifold
with boundary, where n ≥ 2. We fix points ?1, ?2, ?3, ?4 ∈ ∂M and assume, unless
explicitly stated to the contrary, that {?1, ?2} ∩ {?3, ?4} = ∅ (possibly, ?1 = ?2

and/or ?3 = ?4). For i, j ∈ {1, 2, 3, 4}, let Ωij = Ω(M,?i, ?j) be the path space and
Ω◦ij = Ω◦(M,?i, ?j) ⊂ Ωij be the proper path space of (M,?i, ?j).

4.1. Transversality in path spaces

In this section, we study transversality of polychains in the proper path spaces
Ω◦12 and Ω◦34.

4.1.1. Transversal maps. The diagonal of M

diagM = {(x, x) |x ∈M} ⊂M ×M
is a smooth manifold diffeomorphic to M . We say that a smooth map g from
a manifold with faces N to M ×M is weakly transversal to diagM if g(N) does
not meet ∂(diagM ) and the restriction of g to Int(N) = N \ ∂N is transversal to
Int(diagM ) in the usual sense of differential topology. (The interiors of N and diagM
are smooth manifolds so this condition makes sense.) The map g is transversal to
diagM if its restriction to any face of N is weakly transversal to diagM .

Fix manifolds with faces K and L. Consider smooth maps κ : K → Ω◦12,

λ : L → Ω◦34 and let κ̃ : K × I → M , λ̃ : L × I → M be the adjoint maps. The
product map

κ̃× λ̃ : K × I × L× I →M ×M
carries a tuple (k ∈ K, s ∈ I, l ∈ L, t ∈ I) to the point (κ(k)(s), λ(l)(t)). The latter
point can lie on diagM only when s, t ∈ Int(I) = (0, 1) and never lies in ∂(diagM ).

We say that κ and λ are transversal if the map κ̃× λ̃ is transversal to diagM in the
sense above. Note that the maps κ and λ are transversal in our sense if and only
if they are transversal in the sense of [MrOd], see Proposition 7.2.2 therein. (Our
notion of transversality is stronger than the one in [Jo], see Remark 6.3 therein.)
If κ and λ are transversal, then their restrictions to arbitrary faces of K, L are
transversal. Clearly, smooth homotopies of κ and λ that are sufficiently C1-small
preserve transversality.

Lemma 4.1.1. For any smooth maps κ : K → Ω◦12 and λ : L → Ω◦34, there is
an arbitrarily C∞-small smooth homotopy {κt}t∈I of κ0 = κ such that κ1 and λ
are transversal.

Proof. Proceeding by induction on dim(L) ≥ −1, we can assume that κ
is transversal to the restrictions of λ to all proper faces of L. All subsequent
homotopies of κ are chosen to be small enough to preserve this property. Fix a

55



56 4. OPERATIONS ON POLYCHAINS

smooth triangulation T of K× I. A map from a simplex e of T to M is smooth if it
is smooth as a singular simplex in M . A smooth map f : e→M is λ-transversal if
the map f × λ̃ : e×L× I →M ×M is weakly transversal to diagM . We call a map
g : K × I → M good if the adjoint map from K to the space of paths in M takes
values in Ω◦12 = Ω◦(M,?1, ?2). The map g is T -good if it is good and the image of
any simplex of T under g lies in a closed ball in M .

Consider the map κ̃ : K × I → M adjoint to κ. Clearly, κ̃ is good. Since
{?1, ?2} ∩ {?3, ?4} = ∅, the set κ̃(K × ∂I) is disjoint from λ̃(L× I). By continuity,
there is a small δ > 0 such that the sets κ̃(K × [0, δ]) and κ̃(K × [1 − δ, 1]) are

disjoint from λ̃(L × I). Subdividing T , we can assume that κ̃ is T -good and Tδ =
K × ([0, δ] ∪ [1− δ, 1]) is a subcomplex of T . For any simplex e of Tδ, the map κ̃|e
is λ-transversal because (κ̃× λ̃)(e× L× I) ∩ diagM = ∅.

Set p = dim(K). We shall construct p + 2 homotopies κ̃ = κ0  κ1  · · ·  
κp+2 in the class of T -good maps K × I → M such that for all r ≥ 0 and any
simplex e of T of dimension ≤ r − 1, the map κr|e is λ-transversal. Then, the
restriction of κp+2 to any simplex of T is λ-transversal. For each face E of K,

the product E × I is a subcomplex of T . Therefore, the restriction of κp+2 × λ̃ to
E × I × L × I is weakly transversal to diagM . By the beginning of the proof, the
same holds when L is replaced with any of its proper faces. This shows that the
smooth map K → Ω◦12 determined by κp+2 is transversal to λ.

The homotopies κ̃ = κ0  κ1  · · · are constructed recursively. For r = 0,
the condition on κr is void, and we can take κ0 = κ̃. Assume that we have required
homotopies κ0  κ1  · · ·  κr for some r ≥ 0. Consider an r-dimensional
simplex e ∈ T \ Tδ. Clearly, e ⊂ K × Int(I). For ε > 0, let Uε denote the (closed)
metric ε-neighborhood of ∂e in K × Int(I). The inductive assumption implies that

(∗) for a sufficiently small ε > 0, the restriction of the map κr×λ̃
to Uε × L× I is weakly transversal to diagM .

Since κr is good and e ⊂ K × Int(I), we have κr(e) ⊂ Int(M). Since κr is T -good,
κr(e) ⊂ B for a closed ball B ⊂ M . We can choose B so that κr(e) ⊂ Int(B). We
identify B with the closed unit ball in Euclidean space with center 0. Pick a small
neighborhood S ⊂ B of 0 ∈ B so that κr(e) + s ⊂ Int(B) for all s ∈ S. Consider
the smooth maps {fs : e→ B ⊂M}s∈S where fs carries any u ∈ e to κr(u) + s. It
is obvious that the family of maps

{fs × λ̃ : e× L× I →M ×M}s∈S
is weakly transversal to diagM in the sense that the adjoint map

e× L× I × S →M ×M
is weakly transversal to diagM . By the classical transversality theorem (see [GP,
Section 2.3]),

(∗∗) the set Sλ = {s ∈ S : the map fs × λ̃ is weakly transversal to diagM}
is dense (and open) in S.

(This argument is adapted from that of Laudenbach [La, Proof of Lemma 2.6].) In
our terminology, fs is λ-transversal for any s ∈ Sλ. For each s ∈ Sλ, we define a map
gs : e→ B ⊂M by gs(u) = κr(u) + h(u)s for all u ∈ e where h : e→ I is a smooth
function carrying e∩Uε/2 to 0 and e\Uε to 1. Then gs = κr on e∩Uε/2 and gs = fs
on e \ Uε. We deduce from (∗) and (∗∗) that, for all sufficiently small s ∈ Sλ, the
map gs is λ-transversal. Pick such an s and consider the obvious linear homotopy
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κr|e  gs constant on e ∩ Uε/2. Combining such homotopies corresponding to
all r-dimensional simplices e ∈ T \ Tδ and extending by the constant homotopy
on Tδ we obtain a homotopy of κr on the union of Tδ with the r-skeleton of T .
The latter homotopy extends to a homotopy κr  κr+1 in the class of good maps
K× I →M . Taking the vectors s in this construction small enough, we can always
choose the homotopy κr  κr+1 so that it proceeds in the class of T -good maps.
Since this homotopy is constant on Tδ and on the (r − 1)-th skeleton of T , the λ-
transversality of κr on the simplices of T of dimension < r acquired at the previous
steps is preserved during the homotopy. By construction, κr+1 is λ-transversal on
all r-dimensional simplices of T . �

Lemma 4.1.2. The homotopy in Lemma 4.1.1 may be chosen to be constant on
the union of all faces E of K such that κ|E is transversal to λ.

Proof. The proof proceeds by induction on dim(K). If dim(K) = 0, then
we take the constant homotopy on all connected components of K on which κ is
transversal to λ and we take the homotopy provided by Lemma 4.1.1 on all other
components of K. Let p be a positive integer such that the lemma holds for all K of
dimension < p. We prove the lemma for an arbitrary p-dimensional manifold with
faces K. As above, if κ is transversal to λ on some connected components of K,
then we take the constant homotopy on that components. Thus we can assume
without loss of generality that κ may be transversal to λ only on proper faces of K.

Let Σ be the set of all faces E of K such that κ|E is transversal to λ. By the
definition of transversality, if E ∈ Σ, then all faces of E also belong to Σ. Set |Σ| =
∪E∈ΣE and note that |Σ| ⊂ ∂K by our assumption. All homotopies of κ : K → Ω◦12

in the following construction are arbitrarily C∞-small smooth homotopies constant
on |Σ|. We recursively construct p homotopies κ = κ−1  κ0  · · ·  κp−1 such
that the restriction of κr to any face of K of dimension ≤ r is transversal to λ
for all r. Assume that we already have homotopies κ = κ−1  κ0  · · ·  κr−1

with the required properties where 0 ≤ r < p. Consider an r-dimensional face E
of K not belonging to Σ. By the assumptions on κr−1, the restriction of κr−1 to
any proper face of E is transversal to λ. Since dim(E) = r < p, the inductive
assumption guarantees that there is an arbitrarily C∞-small, smooth, constant on
∂E homotopy of κr−1|E into a map E → Ω◦12 transversal to λ. Combining these
homotopies over all E as above together with the constant homotopy on |Σ| and
extending to a small smooth homotopy of κr−1 on the rest of K, we obtain a
homotopy κr−1  κr with the required properties.

Next pick a collar U ∼= ∂K × I ⊂ K of ∂K ∼= ∂K × {0} in K. Set V =

K \ U ⊂ K. Then V is a manifold with faces and ∂V = U ∩ V ∼= ∂K. By the
above, κ′ = κp−1 : K → Ω◦12 is a smooth map whose restriction to all proper faces
of K is transversal to λ. Therefore, choosing the collar U sufficiently narrow, we
can ensure that the map κ′|U : U → Ω◦12 is transversal to λ. By Lemma 4.1.1, there
is an arbitrarily C∞-small homotopy {κt|V }t∈I of κ0|V = κ′|V such that κ1|V is
transversal to λ. This homotopy extends to a small homotopy {κt}t∈I of κ0 = κ′

constant on a neighborhood of ∂K in U . If the homotopy {κt|V }t∈I is sufficiently
small, then the extension may be chosen so that κt|U is transversal to λ for all
t ∈ I. Then κ1|U is transversal to λ, and so, κ1 : K → Ω◦12 is transversal to λ. The
composite homotopy

κ = κ−1  · · · κp−1 = κ′ = κ0  κ1
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satisfies all the conditions of the lemma. �

4.1.2. Transversal polychains. We call smooth polychains K = (K,ϕ, u, κ)
in Ω◦12 and L = (L,ψ, v, λ) in Ω◦34 transversal if the maps κ : K → Ω◦12 and λ : L→
Ω◦34 are transversal. The following two lemmas show that any smooth polychain
can be made transversal to a given smooth polychain by a small deformation.

Lemma 4.1.3. Let K = (K,ϕ, u, κ) and L = (L,ψ, v, λ) be smooth polychains
in Ω◦12 and Ω◦34, respectively. Let N be a union of faces of K. Let

{(κ|N )t : N → Ω◦12}t∈I
be a smooth homotopy of κ|N compatible with ϕ such that (κ|N )1 : N → Ω◦12 is
transversal to L. Then there is a smooth deformation {Kt = (K,ϕ, u, κt)}t∈I of
K0 = K such that K1 is transversal to L and for all t ∈ I,

κt|N = (κ|N )t : N → Ω◦12.

Proof. We apply the same recursive method as in the proof of Lemma 3.4.3
with M replaced by Ω◦12. The homotopy of κ on a representative face F is obtained
in two steps. First, we take an arbitrary smooth homotopy of κ|F extending the
homotopy of κ|∂F obtained at the previous step. Then we compose with an addi-
tional smooth homotopy rel ∂F to a map F → Ω◦12 transversal to λ. The latter
homotopy is provided by Lemma 4.1.2. �

Lemma 4.1.4. Let K = (K,ϕ, u, κ) and L = (L,ψ, v, λ) be smooth polychains in
Ω◦12 and Ω◦34, respectively. There exists an arbitrarily C∞-small smooth deformation
{Kt = (K,ϕ, u, κt)}t∈I of K such that the polychain K1 is transversal to L and
κt|F = κ|F for all t ∈ I and all faces F of K on which κ is transversal to λ.

Proof. This is a special case of Lemma 4.1.3 where N is the union of all
faces of K on which κ is transversal to λ and {(κ|N )t}t is the constant homotopy.
That the deformation {Kt}t may be chosen arbitrarily C∞-small follows from Lem-
mas 4.1.1 and 4.1.2. �

We say that a pair of face homology classes (a ∈ H̃∗(Ω
◦
12), b ∈ H̃∗(Ω

◦
34)) is

transversely represented by a pair (K,L) if K is a smooth reduced polycycle in Ω◦12

representing a, L is a smooth reduced polycycle in Ω◦34 representing b, and K is
transversal to L. The following lemma will play a key role in the sequel.

Lemma 4.1.5. Every pair (a ∈ H̃∗(Ω◦12), b ∈ H̃∗(Ω◦34)) can be transversely repre-
sented by a pair of polycycles. Any two pairs of polycycles transversely representing
(a, b) can be related by a finite sequence of transformations (K,L) 7→ (Ǩ, Ľ) of the
following types:

(i) L ∼= Ľ and Ǩ ∼= Kt∂rM or K ∼= Ǩt∂rM where M is a smooth polychain
in Ω◦12 transversal to L;

(ii) K ∼= Ǩ and Ľ ∼= L t ∂rN or L ∼= Ľ t ∂rN where N is a smooth polychain
in Ω◦34 transversal to K.

Proof. The first claim follows from Lemma 4.1.4 and the surjectivity in The-
orem 3.4.8. That we need only reduced polycycles follows from the fact that the
reduction of a (smooth) polycycle gives a homologous (smooth) polycycle.

We prove the second claim of the lemma. Consider pairs of reduced polycycles
(K1,L) and (K2,L) transversely representing (a, b). Since K1 is homologous to K2,
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we have K1 t ∂rR1
∼= K2 t ∂rR2 for some (n + 1)-polychains R1,R2 in Ω◦12. The

injectivity in Theorem 3.4.8 ensures that R1, R2 can be chosen to be smooth. Then
there are smooth polychains R′1,R

′
2 in Ω◦12 transversal to L such that K1 t ∂rR′1 ∼=

K2 t ∂rR′2. These polychains are obtained from R1, R2 using the same method
as in the proof of Theorem 3.4.5 with the following replacements: M  Ω◦12,
“smooth” “transversal to L”, “homotopy” “smooth homotopy”, Lemma 3.4.3
 Lemma 4.1.3, Lemma 3.4.4  Lemma 4.1.4. The move (K1,L) 7→ (K2,L)
expands as the composition of the following type (i) moves:

(K1,L) 7→ (K1 t ∂rR′1,L) 7→ (K2 t ∂rR′2,L) 7→ (K2,L).

(The middle move is a type (i) move corresponding to M = ∅.) A similar argument
shows that if two pairs of polycycles (K,L1) and (K,L2) transversely represent
(a, b), then the move (K,L1) 7→ (K,L2) is a composition of type (ii) moves.

Consider now any pairs of polycycles (K1,L1) and (K2,L2) transversely repre-
senting (a, b). By Lemma 4.1.4, there is an arbitrarily C∞-small smooth deforma-
tion of K1 into a polycycle K transversal to L2. We assume the deformation to be
so small that K is transversal to L1 as well. By Lemma 3.2.3, K ' K1 represents a.
By the previous paragraph, each of the moves

(K1,L1) 7→ (K,L1) 7→ (K,L2) 7→ (K2,L2)

expands as a composition of moves of types (i) and (ii). �

4.2. Intersection of polychains

We define “intersection” for transversal polychains in Ω◦12 and Ω◦34.

4.2.1. The intersection polychain. Let K = (K,ϕ, u, κ) be a smooth poly-
chain of dimension p in Ω◦12 and let L = (L,ψ, v, λ) be a smooth polychain of
dimension q in Ω◦34. Assume that K and L are transversal in the sense of Sec-
tion 4.1.2. We derive from K and L an “intersection polychain” in Ω32 × Ω14.

Let κ̃ : K × I → M and λ̃ : L × I → M be the adjoint maps of κ and λ
respectively. Set N = K × I × L × I and consider the map κ̃ × λ̃ : N → M ×M .
Since K,L and I are manifolds with faces of dimensions p, q and 1, respectively, N
is a manifold with faces of dimension p+q+2. The transversality of κ and λ implies
that the set

D =
(
κ̃× λ̃

)−1
(diagM ) ⊂ N

is empty if p+ q+ 2 < n and is a (p+ q+ 2−n)-dimensional manifold with corners
if p + q + 2 ≥ n. In the latter case each point of D has a neighborhood V in N
such that V ∩D is homeomorphic to Ru × [0,∞)v for some integers u, v ≥ 0 with
u + v = p + q + 2 − n and V is homeomorphic to Rn × (V ∩ D). These claims
follow from the general theorems about transversality and about submanifolds of
manifolds with corners, see [MrOd, Propositions 3.1.14 and 7.2.7]. Consequently,
P (D) ⊂ P (N) so that we can consider the commutative diagram of inclusion maps

π0(P (D) ∩ V )
i //

j′

��

π0(P (N) ∩ V )

j

��

π0(P (D))
i′ // π0(P (N)) .
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The structure of V described above implies that i is a bijection between v-element
sets. Since N is a manifold with faces, j is an injection. Therefore j′ is injective
which implies that D is a manifold with faces. The faces of D are the connected
components of the intersections of D with faces of N .

We now upgrade D to a polychain in Ω32 × Ω14. First of all, we orient D as
follows. We use the orientation of diagM ≈M and the product orientation ofM×M
to orient the normal vector bundle of diagM in M×M (see the Introduction for our
orientation conventions). Next, we pull-back this orientation of the normal vector

bundle along κ̃× λ̃ to obtain an orientation of the normal vector bundle of D in N .
The latter orientation together with the product orientation in N = K × I ×L× I
induces an orientation of D. We also equip D with the weight w : π0(D) → K
which, for any connected components X of K and Y of L, carries all connected
components of D contained in X × I × Y × I to u(X) v(Y ) ∈ K.

Next, we define a continuous map κ/̃.λ : D × I →M ×M by

(κ/̃.λ)(x, s, y, t, u) =

{
(λ(y)(t ∗ u), κ(x)(s ∗ u)) if 0 ≤ u ≤ 1/2

(κ(x)(s ∗ u), λ(y)(t ∗ u)) if 1/2 ≤ u ≤ 1

for any (x, s, y, t) ∈ D ⊂ K × I × L× I and u ∈ I, where we set

` ∗ u =

{
2`u for ` ∈ I, u ∈ [0, 1/2]
1− 2(1− `)(1− u) for ` ∈ I, u ∈ [1/2, 1].

The key property of the operation ∗ is that for any `, u ∈ I, we have 0 ≤ ` ∗ u ≤ `
if u ∈ [0, 1/2] and ` ≤ ` ∗ u ≤ 1 if u ∈ [1/2, 1]. For a fixed (x, s, y, t) ∈ D, the point

(κ/̃.λ)(x, s, y, t, u) ∈ M ×M moves along the path
(
λ̃(y, t ∗ u), κ̃(x, s ∗ u)

)
from

(?3, ?1) to the diagonal point
(
κ̃(x, s), λ̃(y, t)

)
as u increases from 0 to 1/2 and, next,

it moves from that diagonal point to (?2, ?4) along the path
(
κ̃(x, s ∗ u), λ̃(y, t ∗ u)

)
as u increases from 1/2 to 1: see Figure 4.2.1. Thus the map κ/̃.λ is adjoint to a
continuous map

κ/.λ : D −→ Ω
(
M ×M, (?3, ?1), (?2, ?4)

)
= Ω32 × Ω14

whose coordinate maps are denoted by κ / λ : D → Ω32 and κ . λ : D → Ω14.
Finally, we define a partition of D. Here we need the assumption that the

images of κ and λ lie in Ω◦12 ⊂ Ω12 and Ω◦34 ⊂ Ω34, respectively. This assumption
implies that

D ⊂ K × Int(I)× L× Int(I) ⊂ N.
Therefore each face F of D is contained in a unique smallest face

NF = AF × I ×BF × I

of N , where AF is a face of K and BF is a face of L. Note that the codimension
of F in D is equal to the codimension of NF in N . We declare two faces F and F ′

of D to have the same type if and only if A = AF has the same type as A′ = AF ′

in K, B = BF has the same type as B′ = BF ′ in L, and the diffeomorphism

NF = A× I ×B × I
ϕA,A′×idI ×ψB,B′×idI

// A′ × I ×B′ × I = NF ′

carries F onto F ′. By restriction, we obtain a diffeomorphism θF,F ′ : F → F ′ for
any such F , F ′. This defines a partition, θ, of D. Note that, for each face F of D,
the faces of D of the same type as F are in one-to-one correspondence with the
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?2

λ̃(y, t ∗ u′′)

λ̃(y, t ∗ u′) κ̃(x, s ∗ u′′)

κ̃(x, s ∗ u′)

Figure 4.2.1. The pair (/ , .) = (κ/̃.λ)(x, s, y, t, u) ∈ M ×M
for a fixed (x, s, y, t) ∈ D and u running from 0 to 1.

pairs (A′, B′) where A′ is a face of K of the same type as AF and B′ is a face of L
of the same type as BF .

Lemma 4.2.1. The tuple D(K,L) = (D, θ, w, κ/.λ) is a polychain in Ω32×Ω14.

Proof. We need only to show that the map κ /. λ is compatible with the
partition θ. Consider two faces F and F ′ of the same type in D and set

A = AF , B = BF , A
′ = AF ′ , and B′ = BF ′ .

For any (x, s, y, t) ∈ F and u ∈ [0, 1/2], we have

(κ/.λ) (θF,F ′(x, s, y, t)) (u) = (κ/.λ) (ϕA,A′(x), s, ψB,B′(y), t) (u)

=
(
λ
(
ψB,B′(y)

)
(t ∗ u), κ

(
ϕA,A′(x)

)
(s ∗ u)

)
=

(
λ
(
y
)
(t ∗ u), κ

(
x
)
(s ∗ u)

)
= (κ/.λ) (x, s, y, t) (u)

where the third equality follows from the compatibility of κ with ϕ and of λ with ψ.
A similar argument works for u ∈ [1/2, 1]. Thus, (κ/.λ) θF,F ′ = (κ/.λ)|F . �

4.2.2. Properties of D. We study the behavior of the polychain D(K,L)
under the operations on K and L introduced in Sections 3.2.2 and 3.2.3.

Lemma 4.2.2. Let K,K′ be smooth p-polychains in Ω◦12 and L,L′ be smooth
q-polychains in Ω◦34 such that K,K′ and L,L′ are pairwise transversal. Then
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(i) D(kK,L) ∼= D(K, kL) ∼= kD(K,L) for any k ∈ K;
(ii) redD(redK, redL) = redD(K,L);
(iii) ∂D(K,L) ∼= (−1)nD(∂K,L) t (−1)n+p+1D(K, ∂L);
(iv) ∂rD(K,L) = (−1)n redD(∂rK, redL) t (−1)n+p+1 redD(redK, ∂rL);
(v) D(KtK′,L) ∼= D(K,L)tD(K′,L), D(K,LtL′) ∼= D(K,L)tD(K,L′).

Proof. Claims (i) and (v) are obvious. Claim (iv) easily follows from (ii)
and (iii). We prove (ii). It is clear that

red+ D(red+(−), red+(−)) = red+ D(−,−)

and

red0 D(red0(−), red0(−)) = red0 D(−,−).

Using the identities red red0 = red = red red+, we conclude that

redD(redK, redL) = red red0 D(red0 red+ K, red0 red+ L)

= red red0 D(red+ K, red+ L)

= red red+ D(red+ K, red+ L)

= red red+ D(K,L) = redD(K,L).

We now prove (iii). Let K = (K,ϕ, u, κ), L = (L,ψ, v, λ) and D(K,L) =
(D, θ, w, κ/.λ) as in Section 4.2.1. Consider the boundary polychain

∂D(K,L) = (D∂ , θ∂ , w∂ , (κ/.λ)∂)

as defined in Section 3.2.3, as well as the polychains D(∂K,L) = (∗D, ∗θ, ∗w, κ∂ /.λ)
and D(K, ∂L) = (D∗, θ∗, w∗, κ/.λ∂). We verify that

(4.2.1) D∂ ∼= (−1)n ∗D t (−1)n+p+1D∗.

Consider a principal face F of D. Since the codimension of F in D is equal to
the codimension of NF = AF × I × BF × I in N = K × I × L × I, the face NF
is a principal face of N . Therefore either AF is a connected component of K and
BF is a principal face of L, or, AF is a principal face of K and BF is a connected
component of L. We first analyze the former case. Set N∗ = K × I × L∂ × I.
Then F ⊂ D ⊂ N corresponds to a connected component F ∗ of D∗ ⊂ N∗ via the
map idK × idI × ι × idI : N∗ → N where ι : L∂ → L is the natural map as in
Section 3.2.3. The orientation of F induced by that of ∂D ⊂ D may differ from
the orientation of F ∗ induced by D∗, and we now compute this difference. Let ε1

be the trivial 1-dimensional vector bundle equipped with the canonical orientation
and let −ε1 be the same bundle with the opposite orientation. Given a cartesian
product of topological spaces, let pri denote the projection onto the i-th factor. Set
N∗F = K × I × BF × I, which is a submanifold with faces of N∗ of codimension 0
containing F ∗. We can also view N∗F as a submanifold of N of codimension 1, so
that F ∗ ⊂ N∗F corresponds to F ⊂ N . Using the orientation conventions of the
Introduction and using the letter T for the tangent vector bundle of a manifold, we
obtain the following orientation-preserving isomorphisms of oriented vector bundles:

TN |N∗F = pr∗1(TK)|N∗F ⊕ pr∗2(TI)|N∗F ⊕ pr∗3(TL)|N∗F ⊕ pr∗4(TI)|N∗F
∼= pr∗1(TK)⊕ pr∗2(TI)⊕ ε1 ⊕ pr∗3(TBF )⊕ pr∗4(TI)
∼= (−1)p+1ε1 ⊕ pr∗1(TK)⊕ pr∗2(TI)⊕ pr∗3(TBF )⊕ pr∗4(TI).︸ ︷︷ ︸

=TN∗F
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Therefore

TN |F∗ ∼= (−1)p+1ε1 ⊕ TN∗F |F∗
∼= (−1)p+1ε1 ⊕ νN∗FF

∗ ⊕ TF ∗ = (−1)p+1ε1 ⊕ νN∗F ∗ ⊕ TF ∗

where the letter ν stands for the normal vector bundle of a submanifold in the
ambient manifold. On the other hand, restricting the orientation-preserving iso-
morphism of oriented vector bundles TN |D ∼= νND ⊕ TD to F we obtain that

TN |F ∼= νND|F ⊕ TD|F ∼= νND|F ⊕ ε1 ⊕ TF ∼= (−1)nε1 ⊕ νND|F ⊕ TF.
Since the orientations of νN∗F ∗ = νN∗FF

∗ and νND are both induced by the
orientation of the normal bundle of diagM inx M ×M , the bundle isomorphism
νN∗FF

∗ → νND|F induced by the inclusion N∗F ⊂ N is orientation-preserving.

Combining with the computations above, we deduce that TF ∼= (−1)n+p+1 TF ∗.
The case where AF is a principal face of K and BF is a connected component
of L is treated similarly. In this case, F corresponds to a connected component ∗F
of ∗D, and the orientation of F induced from that of D differs by (−1)n from the
orientation of ∗F induced by ∗D. This gives the diffeomorphism (4.2.1) of oriented
manifolds with faces, which is easily checked to be a diffeomorphism of polychains
as in (iii). �

4.3. The operation Υ̃

We introduce an operation Υ̃ in the face homology of path spaces.

4.3.1. Definition and properties of Υ̃. First, we show that the intersection
operation defined in Section 4.2 induces an operation in face homology.

Lemma 4.3.1. For any integers p, q ≥ 0, the intersection (K,L) 7→ D(K,L)
from Section 4.2.1 induces a bilinear map

H̃p(Ω12)× H̃q(Ω34)→ H̃p+q+2−n(Ω32 × Ω14).

Proof. Consider any face homology classes a ∈ H̃p(Ω12) and b ∈ H̃q(Ω34).
By Lemmas 3.4.7 and 4.1.5, the pair (a, b) can be transversely represented by a
smooth reduced p-polycycle K in Ω◦12 and a smooth reduced q-polycycle L in Ω◦34.
It follows from Lemma 4.2.2.(iv) that the polychain D(K,L) in Ω32 × Ω14 is a

polycycle. Consider another such pair (Ǩ, Ľ) transversely representing (a, b). We

claim that the polycycles D(K,L) and D(Ǩ, Ľ) are homologous. By Lemma 4.1.5,
it suffices to prove this claim in the following two cases:

� L = Ľ and there exists a smooth (p+ 1)-polychain M in Ω◦12 transversal

to L such that K ∼= Ǩ t ∂rM or Ǩ ∼= K t ∂rM;
� K = Ǩ and there exists a smooth (q + 1)-polychain N in Ω◦34 transversal

to K such that L ∼= Ľ t ∂rN or Ľ ∼= L t ∂rN.

Assume for concreteness that L = Ľ and K ∼= Ǩ t ∂rM (the other cases can be
treated similarly). Since L is a reduced polycycle, Lemma 4.2.2.(iv) implies that

∂rD (M,L) = (−1)n redD (∂rM,L) .

This and Lemma 4.2.2.(v) imply that

redD (K,L) ∼= redD
(
Ǩ t ∂rM, Ľ

) ∼= redD
(
Ǩ, Ľ

)
t ∂rD

(
(−1)nM, Ľ

)
.
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We conclude that D (K,L) is homologous to D
(
Ǩ, Ľ

)
. Thus, the face homology

class 〈D (K,L)〉 ∈ H̃p+q+2−n(Ω32 ×Ω14) of D (K,L) depends only on a ∈ H̃p(Ω12)

and b ∈ H̃q(Ω34). This defines the pairing in the statement of the lemma. The
bilinearity of this pairing follows from assertions (i) and (v) in Lemma 4.2.2. �

The pairing produced by Lemma 4.3.1 induces a linear map

H̃p(Ω12)⊗ H̃q(Ω34) −→ H̃p+q+2−n(Ω32 × Ω14).

Taking the direct sum over all p, q ≥ 0, we obtain a linear map of degree 2− n
(4.3.1) Υ̃ : H̃∗(Ω12)⊗ H̃∗(Ω34) −→ H̃∗(Ω32 × Ω14).

To stress the role of the tuple of base points (?1, ?2, ?3, ?4) we will also denote

this map by Υ̃12,34. Any permutation (?i, ?j , ?k, ?l) of (?1, ?2, ?3, ?4) such that
{?i, ?j} ∩ {?k, ?l} = ∅ yields a map

Υ̃ij,kl : H̃∗(Ωij)⊗ H̃∗(Ωkl) −→ H̃∗(Ωkj × Ωil).

We now establish the following symmetry for Υ̃.

Lemma 4.3.2. Let p : Ω32 × Ω14 → Ω14 × Ω32 be the map permuting the two

factors of the cartesian product. For any a ∈ H̃p(Ω12) and b ∈ H̃q(Ω34) with
p, q ≥ 0,

p∗Υ̃12,34(a⊗ b) = (−1)(p+1)(q+1)+n Υ̃34,12(b⊗ a).

Proof. We assume that (a, b) is transversely represented by a smooth re-
duced p-polycycle K = (K,ϕ, u, κ) in Ω◦12 and a smooth reduced q-polycycle L =
(L,ψ, v, λ) in Ω◦34. Let D(K,L) = (D, θ, w, κ/.λ) and D(L,K) = (D′, θ′, w′, λ/.κ).
Let q be the permutation map M ×M →M ×M, (m1,m2) 7→ (m2,m1). This map
preserves diagM pointwise and preserves (respectively, inverts) the orientation of
the normal bundle of diagM in M ×M if n is even (respectively, odd). Let

h : K × I × L× I → L× I ×K × I
be the permutation map defined by (k, s, l, t) 7→ (l, t, k, s). Clearly,

deg h = (−1)(p+1)(q+1) and (λ̃× κ̃)h = q(κ̃× λ̃).

Thus, h restricts to a diffeomorphism h|D : D → D′ of degree (−1)(p+1)(q+1)+n.
This diffeomorphism carries the weight w to w′ and the partition θ to θ′. Also,
(λ /. κ) ◦ h|D = p ◦ (κ /. λ). Thus, h|D is a diffeomorphism of the polychains
p∗D(K,L) and (−1)(p+1)(q+1)+nD(L,K). We conclude that

p∗Υ̃12,34(a⊗ b) = 〈p∗D(K,L)〉 = (−1)(p+1)(q+1)+n 〈D(L,K)〉
= (−1)(p+1)(q+1)+nΥ̃34,12(b⊗ a). �

4.3.2. Computation of Υ̃. To evaluate Υ̃ on a pair of face homology classes
in Ω12,Ω34, we represent these classes by smooth reduced transversal polycycles in
Ω◦12,Ω

◦
34 and take the face homology class of the intersection polycycle. We now

explain how to compute Υ̃ from more general polycycles in Ω12,Ω34.
We say that polycycles (possibly non-smooth and non-reduced) K = (K,ϕ, u, κ)

in Ω12 and L = (L,ψ, v, λ) in Ω34 are admissible if there exist open sets U ⊂
K × Int(I) and V ⊂ L× Int(I) such that

(i) the maps κ̃|U : U → M and λ̃|V : V → M are smooth and their images
do not meet ∂M ;
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(ii) (κ̃× λ̃)−1(diagM ) ⊂ U × V ;

(iii) for any face E of K and any face F of L, the restriction of κ̃× λ̃ to(
Int(E × I) ∩ U

)
×
(

Int(F × I) ∩ V
)

is transversal to Int(diagM ) in the usual sense of differential topology.

If K and L are admissible, then we can define the intersection polycycle D(K,L)
in Ω32 ×Ω14 repeating word for word the definitions of Section 4.2. The polycycle
D(K,L) depends only on K,L and does not depend on the choice of U, V .

Lemma 4.3.3. Let K and L be admissible polycycles in Ω12 and Ω34 represent-

ing, respectively, a ∈ H̃∗(Ω12) and b ∈ H̃∗(Ω34). Then Υ̃(a, b) = 〈D(K,L)〉.

Proof. Let K = (K,ϕ, u, κ) and L = (L,ψ, v, λ). The set

(κ̃× λ̃)−1(diagM ) ⊂ K × I × L× I

is closed and, hence, compact. By (ii), there are compact sets A ⊂ U and B ⊂
V such that (κ̃ × λ̃)−1(diagM ) ⊂ A × B. Pick a small deformation of κ and λ
into smooth maps (in the class of maps compatible with the partitions). The
deformation may be chosen to be constant on some open neighborhoods U ′ ⊂ U ,
V ′ ⊂ V of A,B, respectively, and to be so small that the condition (ii) with U × V
replaced by U ′ × V ′ is met during the deformation. The condition (iii) with U, V
replaced by U ′, V ′ is automatically met during the deformation. By Lemma 3.2.3,
the face homology class 〈D(K,L)〉 is preserved under such a deformation. Thus,
without loss of generality we can assume from the very beginning that the maps κ
and λ are smooth.

Pick a small neighborhood W of ∂M in M such that κ̃(U) ∪ λ̃(V ) ⊂ M \W .
The proof of Lemma 3.4.7 and Theorem 3.4.8 provides, for any i, j ∈ {1, 2, 3, 4},
a homotopy of the identity map id : Ωij → Ωij into a map fij : Ωij → Ω◦ij ⊂ Ωij
such that smooth polycycles in Ωij remain smooth throughout the homotopy. The
homotopy acts on a path in M from ?i to ?j by pushing the interior points of the
path inside M along a 1-parameter family of embeddings M ↪→M . We can assume
that these embeddings are constant on M \W and so, the homotopy fixes all points
of the paths lying in M \W . For i = 1, j = 2 and i = 3, j = 4, these homotopies
induce a smooth deformation of polycycles

{Kt}t∈I = {(K,ϕ, u, κt)}t∈I , {Lt}t∈I = {(L,ψ, v, λt)}t∈I

where κ0 = κ, λ0 = λ, κ1 = f12κ, λ1 = f34λ. Our assumptions ensure that
κ̃t|U = κ̃|U and λ̃t|V = λ̃|V for all t ∈ I. Thus the set (κ̃t × λ̃t)−1(diagM ) does
not depend on t, and Kt,Lt are admissible for all t ∈ I. Then the polycycle
D(K1,L1) is obtained from the polycycle D(K0,L0) = D(K,L) by deformation.
Hence, by Lemma 3.2.3,

〈
D(K1,L1)

〉
= 〈D(K,L)〉. The polycycles red(K1) in Ω◦12

and red(L1) in Ω◦34 transversely represent the pair (a, b). We conclude that

Υ̃(a, b) =
〈
D(redK1, redL1)

〉
=

〈
redD(redK1, redL1)

〉
=

〈
redD(K1,L1)

〉
=
〈
D(K1,L1)

〉
= 〈D(K,L)〉

where the third equality is given by Lemma 4.2.2.(ii). �
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4.3.3. The Leibniz rule. We formulate for Υ̃ a Leibniz-type rule in the sec-

ond variable. (Since Υ̃ is symmetric in the sense of Lemma 4.3.2, a Leibniz-type
rule in the first variable easily follows.) Pick a fifth base point ?5 ∈ ∂M . For any
i, j, k ∈ {1, . . . , 5}, the concatenation of paths c : Ωij×Ωjk → Ωik induces a bilinear
concatenation pairing

(4.3.2) H̃∗(Ωij)× H̃∗(Ωjk) −→ H̃∗(Ωik), (a, b) 7−→ ab = c∗(a× b),
Similarly, for any i, j, k, l,m ∈ {1, . . . , 5}, the map c : Ωij × Ωjk → Ωik induces
bilinear pairings

H̃∗(Ωlm × Ωij)× H̃∗(Ωjk)→ H̃∗(Ωlm × Ωik), (x, a) 7→ xa = (id×c)∗(x× a),

H̃∗(Ωij)× H̃∗(Ωjk × Ωlm)→ H̃∗(Ωik × Ωlm), (a, x) 7→ ax = (c× id)∗(a× x).

Lemma 4.3.4. If ?5 ∈ ∂M \ {?1, ?2}, then for any a ∈ H̃p(Ω12), b ∈ H̃q(Ω34),

and c ∈ H̃i(Ω45) with p, q, i ≥ 0,

Υ̃12,35(a⊗ bc) = (−1)iΥ̃12,34(a⊗ b) c+ (−1)(p+n+1)q b Υ̃12,45(a⊗ c).

Proof. Let K = (K,ϕ, u, κ),L = (L,ψ, v, λ),R = (R,χ, z, ρ) be smooth poly-
cycles in Ω◦12,Ω

◦
34,Ω

◦
45 representing a, b, c respectively. Applying Lemma 4.1.4 twice

(and choosing homotopy there sufficiently small), we can assume that K is transver-
sal to both L and R. Then bc is represented by the following polycycle in Ω35:

N = c∗(L× R) = (L×R,ψ × χ, v × z, η)

where η = c(λ× ρ) and the adjoint map η̃ : L×R× I →M is computed by

η̃(l, r, t) =

{
λ̃(l, 2t) for l ∈ L, r ∈ R, t ∈ [0, 1/2],
ρ̃(r, 2t− 1) for l ∈ L, r ∈ R, t ∈ [1/2, 1].

The polycycles K and N are admissible in the sense of Section 4.3.2: we can take
U = K × Int(I) and V = N × (Int(I) \ {1/2}). It follows from Lemma 4.3.3 that

Υ̃12,35(a⊗ bc) = 〈D(K,N)〉. Thus, to prove the lemma, it is enough to show that

D(K,N) ' (−1)i (id×c)∗(D(K,L)× R)(4.3.3)

t (−1)(p+n+1)q (c× id)∗(L×D(K,R)).

To this end, we compare D(K,N) = (D, θ, w, κ/.η) with

D(K,L) = (D′, θ′, w′, κ/.λ) and D(K,R) = (′D, ′θ, ′w, κ/.ρ).

Consider the embedding

P ′ : (K × I × L× I)×R ↪→ K × I × (L×R)× I
defined by P ′(k, s, l, t, r) = (k, s, l, r, t/2) and the embedding

′P : L× (K × I ×R× I) ↪→ K × I × (L×R)× I
defined by ′P (l, k, s, r, t) = (k, s, l, r, (t + 1)/2). Note that P ′ has degree (−1)i

while ′P has degree (−1)(p+1)q. Consider also the cartesian projections

pr′ : (K × I × L× I)×R −→ K × I × L× I,
′pr : L× (K × I ×R× I) −→ K × I ×R× I.

Clearly, (κ̃×η̃)P ′ = (κ̃×λ̃) pr′. Therefore, the map P ′ restricts to a diffeomorphism
D′×R→ P ′(D′×R) ⊂ D of degree (−1)i. Similarly, since (κ̃× η̃) ′P = (κ̃× ρ̃) ′pr,
the map ′P restricts to a diffeomorphism L × ′D → ′P (L × ′D) ⊂ D of degree
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(−1)(p+1)q+nq. Here we use the following general fact involving our orientation
conventions stated in the Introduction: if X, Y are oriented manifolds and S is an
oriented submanifold of X, then the bundle map νX×Y (S×Y )→ νXS induced by
the cartesian projection X × Y → X is an orientation-preserving isomorphism on
each fiber, while the bundle map νY×X(Y × S) → νXS induced by the cartesian
projection Y ×X → X is orientation-preserving if and only if the product (dimX−
dimS) · dim(Y ) is even.

It is clear from the definition of N and the computations of degrees above that

P ′ t ′P : (−1)i(D′ ×R) t (−1)(p+n+1)q(L× ′D) −→ D

is an orientation-preserving diffeomorphism. We claim that it transports the poly-
chain structures of (id×c)∗ (D(K,L)× R) and (c × id)∗ (L×D(K,R)) into the
polychain structure of D(K,N) up to deformation of the latter. This will imply
(4.3.3) and the lemma.

To prove our claim, we need to verify that P ′ t ′P preserves the face partitions
and the weights and commutes with the maps to the path spaces up to deformation.
We start with the face partitions. Let F ′, G′ be faces of D′ of the same type and
let H,J be faces of R of the same type. Then F ′×H and G′×J are faces of D′×R
of the same type. We claim that the faces F = P ′(F ′ × H) and G = P ′(G′ × J)
of D have the same type. By Section 4.2.1, θ′F ′,G′ : F ′ → G′ is the restriction of
the diffeomorphism

ϕAF ′ ,AG′ × id×ψBF ′ ,BG′ × id : NF ′ = AF ′×I×BF ′×I −→ AG′×I×BG′×I = NG′

to F ′ where NF ′ (respectively, NG′) is the smallest face of K×I×L×I containing F ′

(respectively, G′). The smallest faces NF and NG of K×I×(L×R)×I containing F
and G respectively are

NF = AF ′ × I × (BF ′ ×H)× I and NG = AG′ × I × (BG′ × J)× I.

Clearly, the diagram

NF ′ ×H

P ′

��

(ϕA
F ′ ,AG′

×id×ψB
F ′ ,BG′

×id)×χH,J
// NG′ × J

P ′

��

NF
ϕA

F ′ ,AG′
×id×(ψB

F ′ ,BG′
×χH,J )×id

// NG

commutes, so that the bottom diffeomorphism in that diagram carries F onto G.
We deduce that F and G have the same type in D and the identification map
θF,G : F → G (which, by definition, is the restriction of the bottom diffeomorphism
to F ) satisfies

θF,G ◦ P ′|F ′×H = P ′|G′×J ◦ (θ′F ′,G′ × χH,J).

This proves that P ′ carries the partition θ′×χ on D′×R to the partition θ restricted
to P ′(D′×R) ⊂ D. A similar argument shows that ′P carries the partition ψ× ′θ on
L× ′D to the partition θ restricted to ′P (L× ′D) ⊂ D. It remains only to observe
that a face of D lying in P ′(D′×R) cannot have the same type as a face of D lying
in ′P (L × ′D). To see this, we use the fact that every face F of D determines a
smallest face NF = AF ×I×(BF ×CF )×I of K×I×(L×R)×I such that F ⊂ NF
and AF , BF , CF are faces of K,L,R respectively. If F,G are faces of D of the same
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type, then AF , BF , CF must have the same type as AG, BG, CG respectively, and
the diffeomorphism

ϕAF ,AG × id×(ψBF ,BG × χCF ,CG)× id : NF −→ NG

carries F onto G. Since this diffeomorphism preserves the last coordinate and

P ′(D′×R) ⊂ K × I × (L×R)× [0, 1/2], ′P (L× ′D) ⊂ K × I × (L×R)× [1/2, 1]

we deduce that F and G are both contained either in P ′(D′ ×R) or in ′P (L× ′D).
We next show that the diffeomorphism P ′ t ′P preserves the weights. Let W ′

be a connected component of D′ and let Z be a connected component of R. The
weight of the connected component W ′ × Z of D′ ×R is

(w′ × z)(W ′ × Z) = w′(W ′)z(Z) = u(U)v(V )z(Z)

where U and V are connected components of K and L, respectively, such that
W ′ ⊂ U × I × V × I. Clearly,

P ′(W ′ × Z) ⊂ U × I × (V × Z)× I
so that

w
(
P ′(W ′ × Z)

)
= u(U) · (v × z)(V × Z) = u(U)v(V )z(Z) = (w′ × z)(W ′ × Z).

This proves that P ′ carries the weight w′×z on D′×R to the weight w restricted to
P ′(D′ ×R). A similar argument shows that ′P carries the weight v× ′w on L× ′D
to the weight w restricted to ′P (L×′D).

We now show that P ′ t ′P commutes with the maps to Ω32 ×Ω15 up to defor-
mation. The maps in question are κ/.η : D → Ω32 × Ω15 and f t g where

(4.3.4) f = (id×c)((κ/.λ)× ρ) : D′ ×R→ Ω32 × Ω15,

(4.3.5) g = (c× id)(λ× (κ/.ρ)) : L× ′D → Ω32 × Ω15.

We first compute (κ/.η)P ′. Pick any (k, s, l, t) ∈ D′ and r ∈ R. For x ∈ [0, 1/2],

(κ/.η)(P ′(k, s, l, t, r))(x) = (κ /̃. η)(k, s, l, r, t/2, x)

=
(
η̃(l, r, (t/2) ∗ x), κ̃(k, s ∗ x)

)
=

(
η̃(l, r, tx), κ̃(k, 2sx)

)
=

(
λ̃(l, 2tx), κ̃(k, 2sx)

)
=

(
λ̃(l, t ∗ x), κ̃(k, 2sx)

)
.

Similarly, for x ∈ [1/2, 1],

(κ/.η)(P ′(k, s, l, t, r))(x) = (κ /̃. η)(k, s, l, r, t/2, x)

=
(
κ̃(k, s ∗ x), η̃(l, r, (t/2) ∗ x)

)
=

(
κ̃(k, s ∗ x), η̃(l, r, 1− (2− t)(1− x))

)
.

We separate two cases depending on whether or not 1 − (2 − t)(1 − x) ≤ 1/2 or,
equivalently, on whether or not x ≤ (3−2t)/(4−2t). For x ∈ [1/2, (3−2t)/(4−2t)],
we obtain

(κ/.η)(P ′(k, s, l, t, r))(x) =
(
κ̃(k, s ∗ x), λ̃(l, 2− 2(2− t)(1− x))

)
;

for x ∈ [(3− 2t)/(4− 2t), 1], we obtain

(κ/.η)(P ′(k, s, l, t, r))(x) =
(
κ̃(k, s ∗ x), ρ̃(r, 1− 2(2− t)(1− x))

)
.
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These computations show that the first coordinate map D′×R→ Ω32 of (κ/.η)P ′

is equal to (κ / λ) ◦ pr′ |D′×R, which is also the first coordinate of the map f given
by (4.3.4). The second coordinate maps D′ × R → Ω15 of (κ /. η)P ′ and f may
differ. Nonetheless, they are homotopic in the following way. For any s, t, y ∈ I,
consider the numbers

0 <
1

4
≤ ay =

1 + y

4
≤ 1

2
≤ bt,y =

1

2
+ y

1− t
4− 2t

≤ 3− 2t

4− 2t
< 1

and let

αs,y : [0, ay] −→ [0, s], βt,y : [ay, bt,y] −→ [t, 1], γt,y : [bt,y, 1] −→ [0, 1]

be the affine maps carrying the left/right endpoints of segments to the left/right
endpoints respectively. We define a continuous map e : D′ ×R× I × I →M by

(4.3.6) e(k, s, l, t, r, x, y) =


κ̃(k, αs,y(x)) if x ∈ [0, ay],

λ̃(l, βt,y(x)) if x ∈ [ay, bt,y],
ρ̃(r, γt,y(x)) if x ∈ [bt,y, 1].

Observing that a0 = 1/4, bt,0 = 1/2 and a1 = 1/2, bt,1 = (3 − 2t)/(4 − 2t), we
conclude that e determines a homotopy between the second coordinate maps of f
and (κ /. η)P ′ in the class of maps D′ × R → Ω15. It remains to check that this
homotopy is compatible with the partition θ′ × χ on D′ × R. Any faces F,G of
D′ ×R of the same type expand as F = F ′ ×H and G = G′ × J where F ′, G′ are
faces of D′ of the same type and H,J are faces of R of the same type. Let

NF ′ = AF ′ × I ×BF ′ × I and NG′ = AG′ × I ×BG′ × I

be the smallest faces of K × I × L × I containing F ′ and G′ respectively. The
identifying map (θ′ × χ)F,G : F → G is the restriction of the diffeomorphism(

ϕAF ′ ,AG′ × id×ψBF ′ ,BG′ × id
)
× χH,J : NF ′ ×H −→ NG′ × J.

Since the maps κ, λ, ρ are compatible with the partitions ϕ,ψ, χ respectively, we
deduce from (4.3.6) that for any (k, s, l, t) ∈ F ′, r ∈ H, and x, y ∈ I,

e
(
(θ′ × χ)F,G(k, s, l, t, r), x, y

)
= e

(
ϕAF ′ ,AG′ (k), s, ψBF ′ ,BG′ (l), t, χH,J(r), x, y

)
= e(k, s, l, t, r, x, y).

Hence for each y ∈ I, the map

D′ ×R −→ Ω15, (k, s, l, t, r) 7−→
(
x 7→ e(k, s, l, t, r, x, y)

)
is compatible with the partition θ′ × χ. We conclude that the homotopy of f to
(κ /. η)P ′ determined by e is compatible with the partition θ′ × χ. One similarly
constructs a deformation of the map (4.3.5) into (κ /. η) ′P compatible with the
partition. �

4.3.4. Change of base points. Consider one more tuple (?′1, ?
′
2, ?
′
3, ?
′
4) of

points of ∂M such that {?′1, ?′2} ∩ {?′3, ?′4} = ∅ and set Ω′ij = Ω(M,?′i, ?
′
j). Sec-

tion 4.3.1 yields a linear map

Υ̃′ : H̃∗(Ω
′
12)⊗ H̃∗(Ω′34) −→ H̃∗(Ω

′
32 × Ω′14).

We compare Υ̃′ to the map Υ̃ : H̃∗(Ω12)⊗H̃∗(Ω34)→ H̃∗(Ω32×Ω14) assuming that
?i and ?′i belong to the same connected component of ∂M for all i ∈ {1, 2, 3, 4}.
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Choose a path ςi : I → ∂M from ?i to ?′i for each i. The formula γ 7→ ς−1
i γςj

defines a continuous map (ςi, ςj)# from Ωij to Ωi′j′ . Homotopic paths yield homo-
topic maps, and constant paths yield maps homotopic to the identity. Therefore
(ςi, ςj)# is a homotopy equivalence with homotopy inverse (ς−1

i , ς−1
j )#. The homo-

topy equivalence (ςi, ςj)# induces an isomorphism in the face homology which we
denote by the same symbol:

(4.3.7) (ςi, ςj)# : H̃∗(Ωij)
'−→ H̃∗(Ω

′
ij).

Similarly, the isomorphism H̃∗(Ωij×Ωkl)→ H̃∗(Ω
′
ij×Ω′kl) induced by the homotopy

equivalence (ςi, ςj)# × (ςk, ςl)# is also denoted by (ςi, ςj)# × (ςk, ςl)#.

Lemma 4.3.5. If n ≥ 3, then the following diagram commutes:

(4.3.8) H̃∗(Ω12)⊗ H̃∗(Ω34)
Υ̃ //

(ς1,ς2)#⊗(ς3,ς4)# '
��

H̃∗(Ω32 × Ω14)

(ς3,ς2)#×(ς1,ς4)#'
��

H̃∗(Ω
′
12)⊗ H̃∗(Ω′34)

Υ̃′ // H̃∗(Ω
′
32 × Ω′14).

Proof. Since the isomorphism (ςi, ςj)# depends only on the homotopy classes
of the paths ςi, ςj , and since composition of the paths leads to composition of the
corresponding isomorphisms, it is enough to consider the case where three of the
paths ςi’s are constant. Assume for concreteness that ?1 = ?′1, ?2 = ?′2, ?3 = ?′3,
and ς1, ς2, ς3 are constant paths. The assumption n ≥ 3 implies that deforming if
necessary the path ς = ς4, we can ensure that ς(I) ⊂ ∂M \ {?1, ?2}.

Let a ∈ H̃p(Ω12) and b ∈ H̃q(Ω34). Consider smooth polycycles K = (K,ϕ, u, κ)
in Ω◦12 and L = (L,ψ, v, λ) in Ω◦34 transversely representing the pair (a, b). The

class (1, ς)#(b) ∈ H̃(Ω′34) is represented by the polycycle L′ = (1, ς)#L in Ω′34 (but
not in Ω′◦34). The polycycles K and L′ are admissible in the sense of Section 4.3.2:
we can take U = K × Int(I) and V = L× (0, 1/2). Set D(K,L) = (D, θ, w, κ/.λ)
and D(K,L′) = (D′, θ′, w′, κ /. λ′) where λ′ = (1, ς)]λ. It is easy to construct a
diffeomorphism f : D → D′ preserving the orientation, the weight, and the face
partition, and such that (κ/.λ′) ◦ f is homotopic to (id×(1, ς)#) ◦ (κ/.λ) in the
class of maps D → Ω32 × Ω′14 compatible with θ. Lemma 4.3.3 implies that

Υ̃′
(
a⊗ (1, ς)#(b)

)
= 〈D(K,L′)〉
=

〈(
id×(1, ς)#

)
D(K,L)

〉
= (id×(1, ς)#) 〈D(K,L)〉 = (id×(1, ς)#) Υ̃(a, b).

This proves the commutativity of the diagram (4.3.8). �

4.3.5. Extension of Υ̃. Assuming that n ≥ 3, we extend the definition of Υ̃
to all 4-tuples of points ?1, ?2, ?3, ?4 ∈ ∂M . Deforming these points in ∂M , we can
obtain points ?′1, ?

′
2, ?
′
3, ?
′
4 ∈ ∂M such that {?′1, ?′2}∩{?′3, ?′4} = ∅. For i = 1, . . . , 4,

pick a path ςi : I → ∂M from ?i to ?′i. Section 4.3.1 yields a linear map

Υ̃′ : H̃∗(Ω
′
12)⊗ H̃∗(Ω′34) −→ H̃∗(Ω

′
32 × Ω′14)

where Ω′ij = Ω(M,?′i, ?
′
j) for all i, j. Then we define

Υ̃ = Υ̃12,34 : H̃∗(Ω12)⊗ H̃∗(Ω34) −→ H̃∗(Ω32 × Ω14)
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to be the unique linear map such that the diagram (4.3.8) commutes. Lemma 4.3.5
implies that this map depends neither on the choice of the paths ς1, ς2, ς3, ς4 nor on
the choice of the points ?′1, ?

′
2, ?
′
3, ?
′
4. If {?1, ?2} ∩ {?3, ?4} = ∅, then we can take

?′i = ?i and the constant path ςi for all i, and recover the same map Υ̃ as before.

The properties of Υ̃ established under the assumption {?1, ?2} ∩ {?3, ?4} = ∅
remain true for arbitrary base points in ∂M . This easily follows from the definitions
and the fact that the concatenation pairing (4.3.2) is preserved under the change-
of-base-points isomorphism (4.3.7).

4.3.6. Renormalization. We will use a renormalized version

(4.3.9) Υ̌ = Υ̌12,34 : H̃∗(Ω12)⊗ H̃∗(Ω34) −→ H̃∗(Ω32 × Ω14)

of Υ̃ defined by Υ̌(a⊗ b) = (−1)|b|+n|a|Υ̃(a⊗ b) for any homogeneous a ∈ H̃∗(Ω12)

and b ∈ H̃∗(Ω34). The properties of Υ̃ can be rephrased for Υ̌. In particular,
Lemma 4.3.2 yields the identity

(4.3.10) p∗Υ̌12,34(a⊗ b) = −(−1)|a|n|b|nΥ̌34,12(b⊗ a)

where |−|n = |−| + n is the n-degree. Also, for any ?5 ∈ ∂M (distinct from ?1

and ?2 if n = 2) and any homogeneous a ∈ H̃∗(Ω12), b ∈ H̃∗(Ω34), c ∈ H̃∗(Ω45),
Lemma 4.3.4 yields the Leibniz rule

(4.3.11) Υ̌12,35(a⊗ bc) = Υ̌12,34(a⊗ b) c+ (−1)|a|n|b| b Υ̌12,45(a⊗ c).

Finally, the diagram (4.3.8) remains commutative with Υ̃ replaced by Υ̌.

4.4. The operation Υ

We derive from Υ̌ an operation Υ in singular homology. In this section we drop
the assumption {?1, ?2} ∩ {?3, ?4} = ∅ when n ≥ 3.

4.4.1. Definition and properties of Υ. Consider the linear map

(4.4.1) Υ = Υ12,34 : H∗(Ω12)⊗H∗(Ω34) −→ H∗(Ω32 × Ω14)

defined by the commutative diagram

H̃∗(Ω12)⊗ H̃∗(Ω34)
Υ̌ // H̃∗(Ω32 × Ω14)

[−]

��

H∗(Ω12)⊗H∗(Ω34)

〈−〉×〈−〉

OO

Υ // H∗(Ω32 × Ω14).

Formula (4.3.10) and the naturality of the transformation [−] : H̃∗ → H∗ imply
the following antisymmetry of Υ: for any homogeneous a ∈ H∗(Ω12), b ∈ H∗(Ω34),

(4.4.2) p∗Υ12,34(a⊗ b) = −(−1)|a|n|b|nΥ34,12(b⊗ a)

where p∗ : H∗(Ω32 × Ω14) → H∗(Ω14 × Ω32) is the linear map induced by the
permutation map p : Ω32 × Ω14 → Ω14 × Ω32.
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If n ≥ 3, then the diagram (4.3.8) with Υ̃ replaced by Υ̌ and the naturality of
the transformations 〈−〉 and [−] imply that the following diagram commutes:

(4.4.3) H∗(Ω12)⊗H∗(Ω34)
Υ //

(ς1,ς2)#⊗(ς3,ς4)# '
��

H∗(Ω32 × Ω14)

(ς3,ς2)#×(ς1,ς4)#'
��

H∗(Ω
′
12)⊗H∗(Ω′34)

Υ′ // H∗(Ω
′
32 × Ω′14).

Here, for every i ∈ {1, 2, 3, 4}, ?′i is a point of ∂M connected to ?i by a path
ςi : I → ∂M , Υ′ is the map (4.4.1) determined by the base points ?′1, ?

′
2, ?
′
3, ?
′
4, and,

for all i, j ∈ {1, 2, 3, 4}, (ςi, ςj)# stands for the homotopy equivalence

Ωij → Ω′ij = Ω(M,?′i, ?
′
j), γ 7→ ς−1

i γςj

and for the induced isomorphism in singular homology.
The following crucial lemma will be proved in Section 4.4.3.

Lemma 4.4.1. The following diagram commutes:

(4.4.4) H̃∗(Ω12)× H̃∗(Ω34)

[−]×[−]

��

Υ̌ // H̃∗(Ω32 × Ω14)

[−]

��

H∗(Ω12)×H∗(Ω34)
Υ // H∗(Ω32 × Ω14).

4.4.2. The Leibniz rule for Υ. As in Section 4.3.3 in the case of face homol-
ogy, the concatenation of paths induces three kinds of bilinear pairings in singular
homology:

(4.4.5) H∗(Ωij)×H∗(Ωjk) −→ H∗(Ωik), (a, b) 7−→ ab = c∗(a× b),

H∗(Ωlm × Ωij)×H∗(Ωjk)→ H∗(Ωlm × Ωik), (x, a) 7→ xa = (id×c)∗(x× a),

H∗(Ωij)×H∗(Ωjk × Ωlm)→ H∗(Ωik × Ωlm), (a, x) 7→ ax = (c× id)∗(a× x).

Lemma 4.4.2. For any ?5 ∈ ∂M (distinct from ?1 and ?2 if n = 2) and any
homogeneous a ∈ H∗(Ω12), b ∈ H∗(Ω34), c ∈ H∗(Ω45),

(4.4.6) Υ12,35(a⊗ bc) = Υ12,34(a⊗ b) c+ (−1)|a|n|b| bΥ12,45(a⊗ c).

Proof. For any x ∈ H̃∗(Ωij), y ∈ H̃∗(Ωjk) with i, j, k ∈ {1, . . . , 5}, we have

(4.4.7) [xy] = [c∗(x× y)] = c∗[x× y] = c∗([x]× [y]) = [x][y]

where we use the naturality of [−] and Lemma 3.3.5. In particular, bc = [〈b〉][〈c〉] =
[〈b〉 〈c〉]. We deduce that

Υ12,35(a⊗ bc) = Υ12,35

(
[〈a〉]⊗ [〈b〉 〈c〉]

)
=

[
Υ̌12,35

(
〈a〉 , 〈b〉 〈c〉

)]
=

[
Υ̌12,35

(
〈a〉 , 〈b〉

)
〈c〉+ (−1)|a|n|b| 〈b〉 Υ̌12,35

(
〈a〉 , 〈c〉

)]
=

[
Υ̌12,35

(
〈a〉 , 〈b〉

)]
c+ (−1)|a|n|b|b

[
Υ̌12,35

(
〈a〉 , 〈c〉

)]
= Υ12,35(a, b)c+ (−1)|a|n|b|bΥ12,35(a, c)

where the second, third, fourth and fifth formulas follow respectively from (4.4.4),
(4.3.11), (4.4.7), and the definition of Υ. �
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4.4.3. Proof of Lemma 4.4.1. We claim that, for all a ∈ H̃∗(Ω12) and

b ∈ H̃∗(Ω34),

(4.4.8)
[
Υ̃
(
〈[a]〉 , b

)]
=
[
Υ̃(a, b)

]
=
[
Υ̃
(
a, 〈[b]〉

)]
.

This would imply similar equalities with Υ̃ replaced by Υ̌. Therefore

Υ([a], [b]) =
[
Υ̌
(
〈[a]〉 , 〈[b]〉

)]
=
[
Υ̌
(
a, 〈[b]〉

)]
=
[
Υ̌(a, b)

]
,

which proves the commutativity of the diagram (4.4.4).
We prove the first equality in (4.4.8); the second equality follows by the symme-

try of Υ̃ (Lemma 4.3.2). By Section 4.3.5, we can assume that {?1, ?2}∩{?3, ?4}= ∅.
We need to prove that, for any smooth polycycle K = (K,ϕ, u, κ) in Ω◦12 and any
smooth polycycle L = (L,ψ, v, λ) in Ω◦34 transversal to K,

(4.4.9)
[
Υ̃
(
〈[K]〉 , 〈L〉

)]
= [D(K,L)].

Set p = dim(K). Pick a locally ordered smooth triangulation T of K which
fits ϕ. The construction of such a triangulation in Section 3.3.2 (using Lemma 3.1.1)
shows that we can further assume that (*) F∩τ is a face of τ for any face F of K and
any simplex τ of T (cf. the last paragraph in the proof of Lemma 3.1.1). Consider
the fundamental p-chain

σ = σ(T, u) =
∑
∆

ε∆ u(K∆)σ∆ ∈ Cp(K)

determined by T as in Section 3.3.2 (here ∆ runs over all p-simplices of T ). Then
κ∗(σ) is a smooth singular p-cycle in Ω◦12 representing the singular homology class
[K] ∈ Hp(Ω

◦
12). Next consider the smooth p-polycycle K′ = (K ′, ϕ′, u′, κ′) in Ω◦12

associated with the expansion κ∗(σ) =
∑

∆ ε∆ u(K∆)κσ∆ as in Section 3.3.3. By
construction, K ′ is a disjoint union of copies of the standard p-simplex ∆p indexed
by p-simplices ∆ of T and κ′ = κζ where ζ =

∐
∆ σ∆ : K ′ → K. By the definition

of the transformation 〈−〉 : H∗ → H̃∗,

〈[K]〉 = 〈[κ∗(σ)]〉 = 〈K′〉 ∈ H̃p(Ω12),

so that (4.4.9) is equivalent to

(4.4.10)
[
Υ̃
(
〈K′〉 , 〈L〉

)]
= [D(K,L)].

Lemma 4.1.4 yields a deformation of L into a polycycle L1 transversal to K′.
Such a polycycle L1 is also transversal to K. By Lemma 3.2.3, 〈L〉 =

〈
L1
〉

so that[
Υ̃
(
〈K′〉 , 〈L〉

)]
=
[
Υ̃
(
〈K′〉 ,

〈
L1
〉 )]

. By Lemma 4.3.1, the polycycles D(K,L) and

D
(
K,L1

)
are homologous so that [D(K,L)] =

[
D
(
K,L1

)]
. Thus, in order to prove

(4.4.10), we may assume without loss of generality that L is transversal to K′. We
need to prove that

(4.4.11) [D(K′,L)] = [D(K,L)] .

Set D(K,L) = (D, θ, w, κ/.λ), D(K′,L) = (D′, θ′, w′, κ′ /.λ) and

ζ = ζ × idI × idL× idI : K ′ × I × L× I −→ K × I × L× I.

It follows from the definition that D′ = ζ
−1

(D). Thus D′ is obtained by cutting D
into pieces, each “piece” being a connected component of D ∩ (∆ × I × L × I)
where ∆ is a p-simplex of T . The map ζ|D′ : D′ → D is the obvious gluing map.
It is surjective and its restriction to every connected component of D′ is injective.
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Consider the equivalence relations ∼θ on D and ∼θ′ on D′ defined by the
partitions (see Section 3.1.2). We claim that if some points d1, d2 ∈ D′ satisfy
ζ(d1) ∼θ ζ(d2), then d1 ∼θ′ d2. We now check this claim. Assume that for i = 1, 2,

di = (k′i, s, li, t) ∈ D′ ⊂ K ′ × I × L× I, and set ki = ζ(k′i) ∈ K.

By assumption, there exist faces F1, F2 of D of the same type such that ζ(di) =
(ki, s, li, t) ∈ Fi for i = 1, 2 and θF1,F2

: F1 → F2 carries ζ(d1) to ζ(d2). For i = 1, 2,
let Ai and Bi be faces of K and L respectively such that Ai×I×Bi×I is the smallest
face of K× I×L× I containing Fi. Then ki ∈ Ai, li ∈ Bi, A1 has the same type as
A2, B1 has the same type as B2, and ϕA1,A2(k1) = k2, ψB1,B2(l1) = l2. To proceed,
let ∆i ≈ ∆p be the connected component of k′i in K ′, and let σi = σ∆i

: ∆p → K
be the corresponding singular simplex (which is a simplicial isomorphism onto a
p-simplex of the triangulation T ). Then ki ∈ Ai ∩ σi(∆i). By the assumption (*)
above, Ai ∩ σi(∆i) is a face of the p-simplex σi(∆i). Since T fits ϕ, the sets

τ1 = σ1(∆1) ∩ ϕA2,A1

(
A2 ∩ σ2(∆2)

)
, τ2 = σ2(∆2) ∩ ϕA1,A2

(
A1 ∩ σ1(∆1)

)
are faces of the p-simplices σ1(∆1), σ2(∆2) containing k1, k2 respectively. The map
ϕA1,A2

: A1 → A2 restricts to a simplicial isomorphism ϕ12 : τ1 → τ2 preserving
the order of the vertices and carrying k1 to k2. Set r = dim(τ1) = dim(τ2). Then
τ ′i = σ−1

i (τi) is an r-dimensional face of the p-simplex ∆i containing k′i for i = 1, 2.

The map ϕ′12 = σ−1
2 ϕ12σ1|τ ′1 : τ ′1 → τ ′2 is an order-preserving simplicial isomorphism

and ϕ′12(k′1) = k′2. Since ∆1,∆2 are copies of the standard p-simplex ∆p, their faces
τ ′1, τ

′
2 correspond to certain (r+1)-element subsets S1, S2 of the set {0, . . . , p}. Since

κϕA1,A2 = κ|A1 , we have

(κσ1) ◦ eS1
= (κσ2) ◦ eS2

: ∆r −→ Ω◦12.

By the definition of K′, the latter equality implies that the faces τ ′1, τ ′2 of K ′ have
the same type and ϕ′τ ′1,τ ′2

= ϕ′12 : τ ′1 → τ ′2. Consider now the map

Θ =
(
ϕ′τ ′1,τ ′2 × id×ψB1,B2

× id
)

: τ ′1 × I ×B1 × I → τ ′2 × I ×B2 × I.

We have

Θ(d1) = (ϕ′12(k′1), s, ψB1,B2(l1), t) = d2.

Let Gi be the connected component of di in D′ ∩ (τ ′i × I × Bi × I). The equality
Θ(d1) = d2 implies that Θ(G1) = G2. Thus, G1 and G2 are faces of D′ of the same
type, and the identification map θ′G1,G2

= Θ|G1
carries d1 to d2. This proves that

d1 ∼θ′ d2 as claimed.
Consider the canonical projections π : D → Dθ and π′ : D′ → D′θ′ . The

previous claim implies that there exists a unique map g such that the diagram

Dθ

g

��

D
πoo

D′θ′ D′

ζ|D′

OO

π′oo

commutes. The map g is continuous because π′ is continuous and ζ, π are quotient
maps. Set S = ζ(∂D′) = D∩T p−1 where T p−1 is the (p−1)-skeleton of T . Clearly,
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∂D ⊂ S. Consider the commutative diagram

H∗ (Dθ, (∂D)θ)

��

H∗(D, ∂D)
π∗oo

��

3 [D,w]

[Dθ, w] ∈ H∗ (Dθ) //

g∗

��

77

H∗ (Dθ, Sθ)

g∗

��

H∗(D,S)
π∗oo 3 (ζ|D′)∗([D′, w′])

[
D′θ′ , w

′] ∈ H∗ (D′θ′)
// H∗ (D′θ′ , (∂D

′)θ′) H∗(D
′, ∂D′)

π′∗oo

(ζ|D′ )∗

OO

3 [D′, w′]

where the unlabelled arrows are the inclusion maps. The definition of K′ implies
that the weight u′ : π0(K ′) → K of K′ is the composition of ζ# : π0(K ′) → π0(K)
with the weight u : π0(K) → K of K. Using the definition of the operation D, we
deduce that the weight w′ : π0(D′) → K is the composition of (ζ|D′)# : π0(D′) →
π0(D) with the weight w : π0(D)→ K. This fact and the definition of [D′, w′], [D,w]
imply that (ζ|D′)∗ ([D′, w′]) is the image of [D,w] in H∗(D,S). By Lemma 3.3.1,
the image of [Dθ, w] in H∗ (Dθ, (∂D)θ) is equal to π∗([D,w]). Using this fact, the
uniqueness in Lemma 3.3.1, and a simple diagram chasing we obtain that

(4.4.12) g∗([Dθ, w]) = [D′θ′ , w
′] ∈ H∗(D′θ′).

Next, we verify that

(4.4.13) (κ′ /.λ)θ′g = (κ/.λ)θ : Dθ → Ω32 × Ω14.

Given d = (k, s, l, t) ∈ D, we have gπ(d) = π′(k′, s, l, t) for any k′ ∈ ζ−1(k) ⊂ K ′.
Then

(κ′ /.λ)θ′g
(
π(d)

)
= (κ′ /.λ)(k′, s, l, t) = (κ/.λ)(k, s, l, t) = (κ/.λ)θ

(
π(d)

)
where we use the equality κ′(k′) = κ(k). Since π : D → Dθ is onto, we conclude
that (4.4.13) holds. This and (4.4.12) imply (4.4.11):

[D(K,L)] = ((κ/.λ)θ)∗ ([Dθ, w])

= ((κ′ /.λ)θ′)∗ g∗([Dθ, w])

= ((κ′ /.λ)θ′)∗ ([D′θ′ , w
′]) = [D(K′,L)] .





CHAPTER 5

The intersection bibracket

Throughout this chapter, M is an oriented smooth n-dimensional manifold with
non-void boundary, where n ≥ 2.

5.1. Construction of the intersection bibracket

We introduce the path homology category of M and define the intersection
bibracket in this category.

5.1.1. The path homology category. Let C = C(M) be the graded cat-
egory whose set of objects is ∂M and whose graded modules of morphisms are
defined by

HomC(?, ?′) = H∗
(
Ω(M,?, ?′)

)
for any ?, ?′ ∈ ∂M . Composition in C is the pairing (4.4.5) defined via concate-
nation of paths. For ? ∈ ∂M , the identity morphism of ? in C is the element of
H0(Ω(M,?, ?)) represented by the constant path in ?. We call C the path homology
category of M . By Section 2.2.1, this category determines a graded algebra

(5.1.1) A = A(C) =
⊕

?,?′∈∂M

H∗
(
Ω(M,?, ?′)

)
.

The subcategory C0 of C formed by all objects and morphisms of degree 0 can be
formulated in terms of paths in M : for any ?, ?′ ∈ ∂M , the module of morphisms
HomC0(?, ?′) is freely generated by the set of homotopy classes of paths from ?
to ?′ in M . Thus the category C0 is the linearization of the fundamental groupoid
π1(M,∂M) of M based at ∂M , and the algebra A(C0) is the corresponding groupoid
algebra. Clearly, A(C0) embeds in A as a subalgebra.

5.1.2. The intersection bibracket. Assume that n = dim(M) ≥ 3 and

(5.1.2)
the cross product in the homology H∗(Ω?)

of the loop space Ω? = Ω(M,?, ?) based at ? ∈ ∂M
induces an isomorphism H∗(Ω?)⊗H∗(Ω?) ' H∗(Ω? × Ω?).

By the Künneth theorem, the condition (5.1.2) holds if K is a principal ideal domain
and H∗(Ω?) = H∗(Ω?;K) is a flat K-module (this occurs, for instance, when K is a
field); it also holds for any K if H∗(Ω?;Z) is a free abelian group. Then the cross
product induces an isomorphism $32,14 : H∗(Ω32)⊗H∗(Ω14)→ H∗(Ω32 ×Ω14) for
any choice of base points ?1, ?2, ?3, ?4 ∈ ∂M . Composing the inverse isomorphism
with the map Υ12,34 defined in Section 4.4.1, we obtain a linear map

($32,14)−1Υ12,34 : H∗(Ω12)⊗H∗(Ω34)→ H∗(Ω32)⊗H∗(Ω14).

The direct sum of these maps over all 4-tuples of points in ∂M is a linear map

{{−,−}} : A⊗A −→ A⊗A

77
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called the intersection bibracket of M . We can now state our main result.

Theorem 5.1.1. Under the assumptions above, (C, {{−,−}}) is a double Ger-
stenhaber category of degree d = 2− n.

Proof. That the bibracket {{−,−}} has degree d follows from the fact that the
intersection polychain of a p-polycycle and a q-polycycle has dimension p+q+2−n =
p + q + d for any p, q. The d-antisymmetry of {{−,−}} follows from the formula
(4.4.2) and the following well-known fact: for any topological spaces X and Y such
that the cross product induces an isomorphism H∗(X) ⊗ H∗(Y ) → H∗(X × Y ),
the isomorphism H∗(X) ⊗ H∗(Y ) → H∗(Y ) ⊗ H∗(X) induced by the interchange
of factors X × Y → Y × X and the cross product isomorphisms, carries a ⊗ b
to (−1)|a||b|b ⊗ a for any homogeneous a ∈ H∗(X), b ∈ H∗(Y ); see, for example,
[FHT, Section 4(b)]. The bibracket {{−,−}} satisfies the first Leibniz rule (1.2.2)
as easily follows from Lemma 4.4.2 using the associativity and the naturality of the
cross product in singular homology. By Lemma 1.2.2 and the d-antisymmetry, the
bibracket {{−,−}} also satisfies the second Leibniz rule (1.2.3). Therefore {{−,−}}
is a d-graded bibracket in A.

It is obvious from the definitions that {{−,−}} annihilates the identity mor-
phisms of all objects. It remains only to prove that the associated tribracket is
equal to zero; we postpone the proof to Section 5.2. �

Since d = 2 − n < 0, the restriction of the intersection bibracket in C to C0

is equal to zero. Moreover, the morphisms in C0 represented by paths in ∂M
annihilate the bibracket in C both on the right and on the left.

Theorem 5.1.1 and Lemma 2.2.1 imply that for every integer N ≥ 1, the asso-
ciated representation algebra C+

N is a unital Gerstenhaber algebra of degree 2− n.

5.1.3. The Pontryagin algebra. We now fix a base point ? ∈ ∂M . By the
Pontryagin algebra of M , we mean the unital graded algebra

A? = EndC(M)(?) = H∗(Ω?) where Ω? = Ω(M,?, ?).

Multiplication in A? is the Pontryagin product given by ab = c∗(a× b).
Pontryagin algebras have been extensively studied since Serre’s thesis [Se].

They can be explicitly computed using the Adams–Hilton model [AH] or the tech-
niques of rational homotopy theory (at least, in the simply connected case). We
only mention the relation with the homotopy groups, and refer to [FHT] for a
detailed exposition. Consider the boundary homomorphism

∂i : πi(M) = πi(M,?) −→ πi−1(Ω?) = πi−1(Ω?, e?)

for the path space fibration of M where i ≥ 1 and e? ∈ Ω? is the constant path
at ?. Since the total space of that fibration is contractible, ∂i is an isomorphism for
all i. Composing ∂i with the Hurewicz homomorphism πi−1(Ω?) → Hi−1(Ω?), we
obtain an additive map ∂i : πi(M) → Ai−1

? called the connecting homomorphism.
For i = 1, this homomorphism extends to a ring isomorphism K[π1(M,?)] ' A0

?.
For i = 2, this homomorphism induces an isomorphism from K ⊗Z π2(M) onto
H1(Ωnull

? ) ⊂ A1
? where Ωnull

? is the connected component of Ω? formed by all null-
homotopic loops.

The group π1(M,?) acts on A? by graded algebra automorphisms: the action
of any g ∈ π1(M,?) is the automorphism a 7→ ag = gag−1 of A? where g is viewed
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as an invertible element of A0
?. The inclusion ∂M ⊂ M allows us to consider the

induced action of π1(∂M, ?) on A?.

Theorem 5.1.2. If n = dim(M) ≥ 3 and the condition (5.1.2) is satisfied, then
the restriction of the intersection bibracket {{−,−}} in the category C(M) to A? is
a π1(∂M, ?)-equivariant Gerstenhaber bibracket of degree 2− n.

Proof. Clearly, A? = A(C?) where C? is the full subcategory of C determined
by the object ?. Therefore our claim is a consequence of Theorem 5.1.1 and the
results stated at the end of Section 2.2.2. We only need to check the equivariance.
Let a, b ∈ A? and let ς be a loop in ∂M based at ? representing g ∈ π1(∂M, ?). We
deduce from the commutativity of the diagram (4.4.3) that

Υ(ag⊗bg) = Υ
(
(ς−1, ς−1)](a), (ς−1, ς−1)](b)

)
=
(
(ς−1, ς−1)] × (ς−1, ς−1)]

)
Υ(a, b).

Using the naturally of the cross product, we conclude that

{{ag, bg}} =
(
{{a, b}}′

)g ⊗ ( {{a, b}}′′ )g.
�

By Theorem 5.1.2 and Lemma 2.1.1, the intersection bibracket in A? induces
a natural structure of a Gerstenhaber algebra of degree 2 − n in the commutative
unital graded algebra (A?)

+
N for all N ≥ 1. We call (A?)

+
N the N -th representation

algebra of M . The action of π1(∂M, ?) on A? induces an action of π1(∂M, ?) on
(A?)

+
N by graded algebra automorphisms, and the Gerstenhaber bracket in (A?)

+
N

is π1(∂M, ?)-equivariant. The isomorphism classes of the double Gerstenhaber al-
gebra A? and the Gerstenhaber algebras {(A?)+

N}N depend only on the connected
component of ? in ∂M .

5.1.4. The induced Lie bracket. We keep notation of Section 5.1.3 and
let Ǎ? be the quotient of A? = H∗(Ω?) by the submodule [A?, A?] spanned by
the vectors ab − (−1)|a||b|ba where a, b run over all homogeneous elements of A?.
Under the assumptions of Theorem 5.1.2, the intersection bibracket {{−,−}} in A?
composed with the multiplication of A? induces a (2−n)-graded Lie bracket 〈−,−〉
in Ǎ?, see Section 1.4.1.

The Lie bracket 〈−,−〉 can be computed using the map c∗ : H∗(Ω? × Ω?) →
H∗(Ω?) induced by the concatenation of loops. Namely, if h : A? → Ǎ? is the
natural projection, then for any homogeneous a, b ∈ A?,

〈h(a), h(b)〉 = h({{a, b}}′ {{a, b}}′′)
= hc∗Υ(a⊗ b) = (−1)|b|+n|a|hc∗

([
Υ̃(〈a〉 ⊗ 〈b〉)

])
.

The resulting expression may be used as the definition of 〈−,−〉 avoiding the use of
{{−,−}}. This gives a (2−n)-graded Lie bracket in Ǎ? over an arbitrary commutative
ring K. The Jacobi identity for 〈−,−〉 may be deduced from Lemma 5.2.6 below.
Presumably, the Lie bracket 〈−,−〉 is related to the operation discussed in [KK1,
Remark 3.2.3] using Chas–Sullivan’s techniques.

5.1.5. The simply connected case. Suppose that the manifold M is sim-
ply connected and the ground ring K is a field of characteristic zero. The classical
Milnor–Moore theorem (see [FHT, Theorem 21.5]) asserts that, the Pontryagin
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algebra A? = H∗(Ω?) is fully determined by π∗(M) = ⊕p≥0 πp(M) and the White-
head bracket [−,−]Wh in π∗(M). More precisely, consider the graded module

L? =
⊕
p≥0

K⊗Z πp(Ω?)

(obtained from π∗(M) by tensorizing with K and shifting the degree by 1), and
equip L? with the bracket defined by

[k ⊗ α, l ⊗ β] = kl ⊗ (−1)p+1∂p+q+1

([
∂−1
p+1(α), ∂−1

q+1(β)
]
Wh

)
∈ K⊗ πp+q(Ω?)

for any k, l ∈ K, α ∈ πp(Ω?), β ∈ πq(Ω?). Then L? is a 0-graded Lie algebra and
the Hurewicz homomorphism L? → A? extends to an isomorphism of the universal
enveloping algebra U(L) onto A?. Moreover, under this isomorphism, the standard
comultiplication in U(L) carrying any α ∈ L? to α⊗ 1 + 1⊗ α corresponds to the
comultiplication in A? induced by the diagonal map Ω? → Ω? × Ω?. Note that,
by the Poincaré–Birkhoff–Witt theorem for graded Lie algebras [FHT, Theorem
21.1], the natural linear map L? → U(L?) is injective so that L? can be treated as
a submodule of U(L?) ' A?.

Recall from Section 2.1.2 that the 0-graded Lie algebra L? gives rise to rep-
resentation algebras {(L?)N}N≥1. The Milnor–Moore isomorphism U(L?) ' A?
induces an isomorphism (L?)N ' (A?)

+
N for all N ≥ 1. In this way, the algebras

{(L?)N}N≥1 acquire a structure of Gerstenhaber algebras of degree 2− n.

5.1.6. The 2-dimensional case. The case n = 2 (so far ruled out in this
section by the assumptions of Section 5.1.2) has been extensively studied by several
authors and gave the original impetus to this work. We briefly discuss this case.

A connected oriented surface M with ∂M 6= ∅ is an Eilenberg–MacLane space
K(π, 1) where π is the fundamental group of M . For any points ?1, ?2 ∈ ∂M ,
the space Ω(M,?1, ?2) is homotopy equivalent to the underlying discrete set of π.
Therefore, in the notation of Section 5.1.1, we have C = C0 and A = A(C0) is the
groupoid algebra of π1(M,∂M).

For any points ?1, ?2, ?3, ?4 ∈ ∂M such that {?1, ?2} ∩ {?3, ?4} = ∅, Sec-
tion 4.4.1 yields a linear map

Υ12,34 : H0(Ω12)⊗H0(Ω34) −→ H0(Ω32 × Ω14) = H0(Ω32)⊗H0(Ω14)

(the latter equality holds for all K). This construction extends to arbitrary 4-tuples
of points in ∂M by slightly pushing these points in the positive direction along ∂M
and proceeding as in Section 4.3.5. After an appropriate normalization, this yields
a 0-antisymmetric 0-graded bibracket of degree 0 in the groupoid algebra A. This
bibracket is quasi-Poisson in an appropriate sense, cf. [AKsM, VdB, MT1]. For
? ∈ ∂M , the restriction of this bibracket to the group algebra A? = K[π1(M,?)] is
the double bracket {{−,−}}s studied in [MT1, Section 7]. It is closely related to the
homotopy intersection form in K[π1(M,?)] introduced in [Tu1]; see also [KK2] for
a similar operation. The associated Lie bracket 〈−,−〉 in Ǎ? was first introduced
by Goldman [Go2].

Lemma 2.2.1 implies that for every integer N ≥ 1, the above bibracket in A
induces a bracket in the associated representation algebra C+

N . This bracket is quasi-

Poisson (and not Poisson), cf. [MT1]. Note that C+
N is the coordinate algebra of

the affine scheme (over K) that associates to any unital commutative algebra B the
set of groupoid homomorphisms π1(M,∂M) → GLN (B). Indeed, through linear
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extension of groupoid homomorphisms, the latter set may be identified with the set
of linear functors from C to the category MatN (B) considered in Section 2.2.1. We
conclude by applying (2.2.1).

5.2. The Jacobi identity

We conclude the proof of Theorem 5.1.1 by proving that the tribracket associ-
ated with the intersection bibracket is equal to zero. We resume notation of Chap-
ter 4, i.e., fix points ?1, ?2, ?3, ?4 ∈ ∂M such that {?1, ?2}∩{?3, ?4} = ∅ and, for any
i, j ∈ {1, 2, 3, 4}, let Ωij = Ω(M,?i, ?j) be the path space and Ω◦ij = Ω◦(M,?i, ?j)
be the proper path space of (M,?i, ?j). We start by developing a parametrized
version of the theory of polychains in path spaces.

5.2.1. Parametrized versions of Υ̃, Υ̌, and Υ. Let Z be an arbitrary
topological space. Given a polychain L = (L,ψ, v, λ) in Ω◦34 × Z, we let λ′ and λ′′

be the compositions of λ : L → Ω◦34 × Z with the projections to Ω◦34 and Z,
respectively. We call the polychain L smooth if the map λ′ : L→ Ω◦34 is smooth in
the sense of Section 3.4.2. Applying the definitions of Section 3.2.4 but considering

only smooth polychains in Ω◦34×Z, we obtain smooth face homology H̃s
∗(Ω

◦
34×Z).

The proof of Theorem 3.4.8 easily adapts to this setting and yields that the natural
linear map

H̃s
∗(Ω

◦
34 × Z) −→ H̃∗(Ω

◦
34 × Z) ' H̃∗(Ω34 × Z)

is an isomorphism. This computes the face homology of Ω34×Z in terms of smooth
polychains in Ω◦34 × Z.

We say that smooth polychains K = (K,ϕ, u, κ) in Ω◦12 and L = (L,ψ, v, λ)
in Ω◦34 × Z are transversal if the maps κ : K → Ω◦12 and λ′ : L → Ω◦34 are

transversal in the sense of Section 4.1.1. A pair (a, b) ∈ H̃p(Ω12) × H̃q(Ω34 × Z)
with p, q ≥ 0 is transversely represented by a pair (K,L) if K is a smooth reduced
p-polycycle in Ω◦12 and L is a smooth reduced q-polycycle in Ω◦34 × Z transversal
to K. Adapting the proof of Lemma 4.1.5, we obtain that any pair (a, b) as above
can be transversely represented by a pair of polycycles, and, furthermore, any two
such pairs of polycycles can be related by a finite sequence of transformations
(K,L) 7→ (Ǩ, Ľ) of the following types:

(i) L ∼= Ľ and Ǩ ∼= K t ∂rM or K ∼= Ǩ t ∂rM where M is a smooth (p+ 1)-
polychain in Ω◦12 transversal to L;

(ii) K ∼= Ǩ and Ľ ∼= L t ∂rN or L ∼= Ľ t ∂rN where N is a smooth (q + 1)-
polychain in Ω◦34 × Z transversal to K.

We next adapt the construction of the intersection polychain. Consider smooth
transversal polychains K = (K,ϕ, u, κ) in Ω◦12 and L = (L,ψ, v, λ) in Ω◦34×Z. Since
the polychain L′ = (L,ψ, v, λ′) in Ω◦34 is smooth and transversal to K, Section 4.2.1
yields an intersection polychain D(K,L′) = (D, θ, w, κ/.λ′) in Ω32 × Ω14. We lift
D(K,L′) to a polychain in Ω32 × Ω14 × Z as follows.

Lemma 5.2.1. Let pr : K×I×L×I → L be the cartesian projection. The tuple
DZ(K,L) = (D, θ, w, δ) with δ = (κ/.λ′, λ′′◦pr |D) is a polychain in Ω32×Ω14×Z.

Proof. We need only to check that the map λ′′ ◦ pr |D : D → Z is compatible
with the partition θ. Let F,G be two faces of D of the same type and let

NF = AF × I ×BF × I, NG = AG × I ×BG × I
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be the smallest faces of K × I × L × I containing F,G, respectively. Since λ′′ is
compatible with the partition ψ of L, we have for any (k, s, l, t) ∈ F

λ′′ pr
(
θF,G(k, s, l, t)

)
= λ′′ pr

(
ϕAF ,AG(k), s, ψBF ,BG(l), t

)
= λ′′

(
ψBF ,BG(l)

)
= λ′′(l) = λ′′ pr(k, s, l, t). �

The next claim is a parametrized version of Lemma 4.3.1 and is proved similarly.

Lemma 5.2.2. For any integers p, q ≥ 0, the intersection (K,L) 7→ DZ(K,L)

induces a bilinear map H̃p(Ω12)× H̃q(Ω34 × Z)→ H̃p+q+2−n(Ω32 × Ω14 × Z).

The direct sum over all integers p, q ≥ 0 of the pairings produced by Lemma 5.2.2
is a linear map of degree 2− n

Υ̃12,34Z : H̃∗(Ω12)⊗ H̃∗(Ω34 × Z) −→ H̃∗(Ω32 × Ω14 × Z).

As in Section 4.3.6, a normalized version of this map

Υ̌12,34Z : H̃∗(Ω12)⊗ H̃∗(Ω34 × Z) −→ H̃∗(Ω32 × Ω14 × Z)

is defined by Υ̌12,34Z(a ⊗ b) = (−1)|b|+n|a| Υ̃12,34Z(a ⊗ b) for any homogeneous

a ∈ H̃∗(Ω12) and b ∈ H̃∗(Ω34×Z). We also define an operation Υ12,34Z in singular
homology by the commutative diagram

(5.2.1) H̃∗(Ω12)⊗ H̃∗(Ω34 × Z)
Υ̌12,34Z

// H̃∗(Ω32 × Ω14 × Z)

[−]

��

H∗(Ω12)⊗H∗(Ω34 × Z)

〈−〉×〈−〉

OO

Υ12,34Z
// H∗(Ω32 × Ω14 × Z).

The proof of Lemma 4.4.1 extends to this setting and gives the commutative dia-
gram

(5.2.2) H̃∗(Ω12)⊗ H̃∗(Ω34 × Z)
Υ̌12,34Z

//

[−]×[−]

��

H̃∗(Ω32 × Ω14 × Z)

[−]

��

H∗(Ω12)⊗H∗(Ω34 × Z)
Υ12,34Z

// H∗(Ω32 × Ω14 × Z).

The following two lemmas will help us to compute Υ̃12,34Z and Υ12,34Z .

Lemma 5.2.3. For any a ∈ H̃∗(Ω12), any b ∈ H̃∗(Ω34) and any homogeneous

c ∈ H̃∗(Z), we have Υ̃12,34Z

(
a⊗ (b× c)

)
= (−1)|c| Υ̃12,34(a⊗ b)× c.

Proof. It suffices to consider the case where a and b are homogeneous. Let
K = (K,ϕ, u, κ) and L = (L,ψ, v, λ) be smooth polycycles in Ω◦12 and Ω◦34 represent-
ing a and b respectively, and such that K is transversal to L. Let N = (N,χ, z, η)
be a polycycle in Z representing c. Then

Υ̃12,34(a⊗ b)× c = 〈D(K,L)×N〉 .

By the definition of Υ̃12,34Z ,

Υ̃12,34Z

(
a⊗ (b× c)

)
=
〈
DZ(K,L×N)

〉
.
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Therefore, it is enough to show that

(5.2.3) D(K,L)×N = (−1)|c|DZ(K,L×N).

We set D(K,L) = (D, θ, w, κ/.λ) so that

D(K,L)×N =
(
D ×N, θ × χ,w × z, (κ/.λ)× η

)
.

We also set

DZ(K,L×N) =
(
DZ , θZ , wZ , δZ

)
with δZ =

(
κ/.(λ prL), η prN |DZ

)
where prL : L × N → L and prN : K × I × (L × N) × I → N are the cartesian
projections. The map

(K × I × L× I)×N −→ K × I × (L×N)× I, (k, s, l, t, n) 7−→ (k, s, l, n, t)

restricts to a diffeomorphism f : D×N → DZ of degree (−1)dim(N) = (−1)|c|. For
any point (k, s, l, t, n) in D ×N , we have

δZf(k, s, l, t, n) = δZ(k, s, l, n, t) =
(
(κ/.λ)(k, s, l, t), η(n)

)
=

(
(κ/.λ)× η

)
(k, s, l, t, n).

Furthermore, the diffeomorphism f carries the partition θ×χ to θZ and the weight
w × z to the weight wZ . Hence, f is a diffeomorphism of polychains (5.2.3). �

Lemma 5.2.4. For any a ∈ H∗(Ω12), b ∈ H∗(Ω34) and c ∈ H∗(Z), we have

Υ12,34Z

(
a⊗ (b× c)

)
= Υ12,34

(
a⊗ b

)
× c

Proof. It suffices to consider homogeneous a, b, c. By Lemma 3.3.5, we have
b× c = [〈b〉]× [〈c〉] = [〈b〉 × 〈c〉]. We deduce that

Υ12,34Z

(
a⊗ (b× c)

)
= Υ12,34Z

(
[〈a〉]⊗ [〈b〉 × 〈c〉]

)
=

[
Υ̌12,34Z

(
〈a〉 ⊗ (〈b〉 × 〈c〉)

)]
= (−1)|b|+|c|+n|a|

[
Υ̃12,34Z

(
〈a〉 ⊗ (〈b〉 × 〈c〉)

)]
= (−1)|b|+n|a|

[
Υ̃12,34(〈a〉 ⊗ 〈b〉)× 〈c〉

]
= (−1)|b|+n|a|

[
Υ̃12,34(〈a〉 ⊗ 〈b〉)

]
× [〈c〉]

= Υ12,34

(
a⊗ b

)
× c

where the second, fourth and fifth equalities follow from (5.2.2), Lemma 5.2.3 and
Lemma 3.3.5 respectively. �

Given two topological spaces Y and Z, a straightforward generalization of the
constructions above and of Lemma 5.2.2 yields a bilinear map

Υ̃Y 12,34Z : H̃∗(Y × Ω12)⊗ H̃∗(Ω34 × Z) −→ H̃∗(Y × Ω32 × Ω14 × Z).

A normalized version Υ̌Y 12,34Z of this map is defined by

Υ̌Y 12,34Z(a⊗ b) = (−1)|b|+n|a| Υ̃Y 12,34Z(a⊗ b)
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for any homogeneous a ∈ H̃∗(Y × Ω12) and b ∈ H̃∗(Ω34 × Z). The corresponding
map in singular homology is defined by the commutative diagram

(5.2.4) H̃∗(Y × Ω12)⊗ H̃∗(Ω34 × Z)
Υ̌Y 12,34Z

// H̃∗(Y × Ω32 × Ω14 × Z)

[−]

��

H∗(Y × Ω12)⊗H∗(Ω34 × Z)

〈−〉×〈−〉

OO

ΥY 12,34Z
// H∗(Y × Ω32 × Ω14 × Z).

Then, again, we have the commutative diagram

(5.2.5) H̃∗(Y × Ω12)⊗ H̃∗(Ω34 × Z)
Υ̌Y 12,34Z

//

[−]×[−]

��

H̃∗(Y × Ω32 × Ω14 × Z)

[−]

��

H∗(Y × Ω12)⊗H∗(Ω34 × Z)
ΥY 12,34Z

// H∗(Y × Ω32 × Ω14 × Z).

Finally, Lemma 5.2.4 generalizes to the identity

(5.2.6) ΥY 12,34Z

(
(c× a)⊗ (b× d)

)
= c×Υ12,34

(
a⊗ b

)
× d

for any a ∈ H∗(Ω12), b ∈ H∗(Ω34) and c ∈ H∗(Y ), d ∈ H∗(Z).

5.2.2. Half-smooth polychains. We compute the intersection operations of
Section 5.2.1 via so-called “half-smooth” polychains. Let Z be a topological space.
A q-polychain L = (L,ψ, v, (λ′, λ′′) : L→ Ω◦34×Z) is half-smooth if the restrictions

of the map λ̃′ : L×I →M (adjoint to λ′) to the manifolds with faces L×[0, 1/2] and
L× [1/2, 1] are smooth. Furthermore, L is half-transversal to a smooth p-polychain
K = (K,ϕ, u, κ) in Ω◦12 if for any face E of K, any face F of L, and any of the three
sets J = [0, 1/2], [1/2, 1], {1/2} the map

κ̃× λ̃′ : E × I × F × J −→M ×M
is weakly transversal to diagM in the sense of Section 4.1.1. Then the set

D(J) =
{

(k, s, l, t) ∈ K × I × L× J : κ̃(k, s) = λ̃(l, t)
}

inherits from K × I × L× J a structure of a manifold with faces, and we have

(5.2.7) D(J) ⊂ K × Int(I)× L× (J ∩ Int(I)).

Set
D− = D([0, 1/2]), D+ = D([1/2, 1]), D

1/2 = D({1/2}).
It is clear that D1/2 = D− ∩D+ = ∂D− ∩ ∂D+ and

dimD− = dimD+ = p+ q + 2− n, dimD
1/2 = p+ q + 1− n.

Since L may be non-smooth, we cannot consider the intersection polychain
DZ(K,L). (A priori, the set D−∪D+ does not have a structure of a manifold with
faces.) Instead, we turn the disjoint union D− t D+ into a polychain which will
serve as a substitute for DZ(K,L). The inclusion (5.2.7) allows us to use the same
construction as in Section 4.2.1 in order to upgrade D−, D+, and D1/2 to poly-
chains in Ω◦32 × Ω◦14 × Z denoted, respectively, D− = D−(K,L), D+ = D+(K,L),
and D

1/2 = D
1/2(K,L). As can be checked from our conventions, the oriented man-

ifold D1/2 has the orientation inherited from (−1)p+q+1+n∂D− or, equivalently, the
orientation inherited from (−1)p+q+n∂D+. The inclusions D1/2 ⊂ D± are compat-
ible with the polychain structures (except for the orientations): they map faces of
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D1/2 diffeomorphically onto faces of D±, map faces of the same type onto faces
of the same type, commute with the identification diffeomorphisms of the faces,
commute with the maps to Ω◦32 × Ω◦14 × Z, and the induced maps in π0 commute
with the weights. Also, a face of D± having the same type as the image of a face
F of D1/2 must be the image of a face of D1/2 of the same type as F . These facts
allow us to form a (p + q + 2− n)-polychain Dh = Dh(K,L) in Ω◦32 × Ω◦14 × Z by
taking the disjoint union D−tD+ and declaring that the images of any face of D1/2

in D− and D+ have the same type and the identification diffeomorphism between
them is the identity map. We shall sometimes write

D− ∪
1/2

D+

for this polychain Dh.

Lemma 5.2.5. Let K be a smooth p-polycycle in Ω◦12 and let L be a half-smooth
q-polycycle in Ω◦34 × Z half-transversal to K. Then Dh(K,L) is a polycycle in
Ω◦32 × Ω◦14 × Z and[

Υ̃12,34Z(〈K〉 , 〈L〉)
]

= [Dh(K,L)] ∈ Hp+q+2−n(Ω32 × Ω14 × Z).

Proof. Lemma 4.2.2 directly extends to smooth polychains K, K′ in Ω◦12 and
half-smooth polychains L,L′ in Ω◦34 ×Z half-transversal to K, K′; one should only
replace D by Dh. This implies the first claim of Lemma 5.2.5.

There is an arbitrarily small deformation
{
Lt =

(
L,ψ, v, ((λ′)t, λ′′)

)}
t∈I of

L0 = L into a smooth polycycle L1. We can assume that the restrictions of the

maps (λ̃′)t : L×[0, 1]→M to L×[0, 1/2] and L×[1/2, 1] are smooth maps smoothly
depending on t ∈ I. As in the proof of Lemma 3.2.3, we derive from the deforma-
tion {Lt}t∈I a (q+ 1)-polychain R in Ω◦34×Z such that ∂rR = red(L1)t red(−L).
The assumptions on the deformation imply that R is half-smooth. Taking the de-
formation small enough, we can ensure that R is half-transversal to K. By the
assumption ∂rK = ∅ and the generalized version of Lemma 4.2.2,

(−1)n+p+1∂rDh(K,R) = redDh
(

redK, red(L1) t red(−L)
)

= redDh(redK, redL1) t
(
− redDh(redK, redL)

)
= redDh(K,L1) t

(
− redDh(K,L)

)
.

Therefore 〈
Dh(K,L)

〉
=
〈
Dh(K,L1)

〉
∈ H̃p+q+2−n(Ω32 × Ω14 × Z).

Projecting to singular homology, we obtain the equality[
Dh(K,L)

]
=
[
Dh(K,L1)

]
∈ Hp+q+2−n(Ω32 × Ω14 × Z).

Since the polycycle L1 is smooth, the manifold with faces underlying Dh(K,L1)
is obtained by cutting out the manifold with faces underlying DZ(K,L1) along a
smooth compact oriented proper submanifold of codimension 1. This easily implies
the equality

[
Dh(K,L1)

]
=
[
DZ(K,L1)

]
. Thus,[

Υ̃12,34Z(〈K〉 , 〈L〉)
]

=
[
Υ̃12,34Z(〈K〉 ,

〈
L1
〉
)
]

=
[
DZ(K,L1)

]
=
[
Dh(K,L)

]
. �
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5.2.3. A Jacobi-type identity for Υ. As in Section 4.3.5, the operations

Υ̃12,34Z , Υ̌12,34Z , Υ12,34Z generalize to all tuples ?1, ?2, ?3, ?4 ∈ ∂M . We pick

two extra points ?5, ?6 ∈ ∂M . For Z = Ω56, the maps Υ̃12,34Z , Υ̌12,34Z , Υ12,34Z

will be denoted respectively by Υ̃12,3456, Υ̌12,3456, Υ12,3456. Given a permutation
(i, j, k, l,m, n) of (1, 2, 3, 4, 5, 6), we can accordingly renumber the points ?1, . . . , ?6

and consider the corresponding maps Υ̃ij,klmn, Υ̌ij,klmn, Υij,klmn. We now establish
a Jacobi-type identity for Υij,klmn.

Lemma 5.2.6. Consider the permutation maps

p231 : Ω36 × Ω52 × Ω14 −→ Ω52 × Ω14 × Ω36, (x, y, z) 7−→ (y, z, x),

p312 : Ω14 × Ω36 × Ω52 −→ Ω52 × Ω14 × Ω36, (x, y, z) 7−→ (z, x, y).

For any a ∈ Hp(Ω12), b ∈ Hq(Ω34) and c ∈ Hr(Ω56) with p, q, r ≥ 0, we have the
following equality in Hp+q+r+4−2n(Ω52 × Ω14 × Ω36):

Υ12,5436 (a⊗Υ34,56(b⊗ c))
+(−1)(p+n)(q+r)(p312)∗Υ34,1652 (b⊗Υ56,12(c⊗ a))

+(−1)(p+q)(r+n)(p231)∗Υ56,3214 (c⊗Υ12,34(a⊗ b)) = 0.

Proof. Set ε = (−1)n(q+1)+pr. The definition of Υ34,56 and (5.2.2) imply that

Υ12,5436 (a⊗Υ34,56(b⊗ c))
= Υ12,5436

(
[〈a〉]⊗

[
Υ̌34,56(〈b〉 ⊗ 〈c〉)

])
=

[
Υ̌12,5436

(
〈a〉 ⊗ Υ̌34,56(〈b〉 ⊗ 〈c〉)

)]
= (−1)(r+nq)+(q+r+n+np)

[
Υ̃12,5436

(
〈a〉 ⊗ Υ̃34,56(〈b〉 ⊗ 〈c〉)

)]
= ε(−1)q+p(n+r)

[
Υ̃12,5436

(
〈a〉 ⊗ Υ̃34,56(〈b〉 ⊗ 〈c〉)

)]
.

Using the naturality of the transformation [−], we also obtain that

(−1)(p+n)(q+r)(p312)∗Υ34,1652 (b⊗Υ56,12(c⊗ a))

= (−1)(p+n)(q+r)
[
(p312)∗Υ̌34,1652

(
〈b〉 ⊗ Υ̌56,12(〈c〉 ⊗ 〈a〉)

)]
= (−1)(p+n)(q+r)+(p+nr)+(r+p+n+nq)

[
(p312)∗Υ̃34,1652

(
〈b〉 ⊗ Υ̃56,12(〈c〉 ⊗ 〈a〉)

)]
= ε(−1)r+q(n+p)

[
(p312)∗Υ̃34,1652

(
〈b〉 ⊗ Υ̃56,12(〈c〉 ⊗ 〈a〉)

)]
and

(−1)(p+q)(r+n)(p231)∗Υ56,3214 (c⊗Υ12,34(a⊗ b))
= (−1)(p+q)(r+n)

[
(p231)∗Υ̌56,3214

(
〈c〉 ⊗ Υ̌12,34(〈a〉 ⊗ 〈b〉)

)]
= (−1)(p+q)(r+n)+(q+np)+(p+q+n+nr)

[
(p231)∗Υ̃56,3214

(
〈c〉 ⊗ Υ̃12,34(〈a〉 ⊗ 〈b〉)

)]
= ε(−1)p+r(n+q)

[
(p231)∗Υ̃56,3214

(
〈c〉 ⊗ Υ̃12,34(〈a〉 ⊗ 〈b〉)

)]
.

Thus, it is enough to prove the following identity in H∗ (Ω52 × Ω14 × Ω36), where

a ∈ H̃p(Ω12), b ∈ H̃q(Ω34) and c ∈ H̃r(Ω56) are now any face homology classes:

(−1)q+p(n+r)
[
Υ̃12,5436

(
a⊗ Υ̃34,56(b⊗ c)

)]
(5.2.8)

+(−1)r+q(n+p)
[
(p312)∗Υ̃34,1652

(
b⊗ Υ̃56,12(c⊗ a)

)]
+(−1)p+r(n+q)

[
(p231)∗Υ̃56,3214

(
c⊗ Υ̃12,34(a⊗ b)

)]
= 0.
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Slightly moving the points ?1, . . . , ?6 in ∂M , we can assume that they are
pairwise distinct. Let K = (K,ϕ, u, κ) be a smooth p-polycycle in Ω◦12 represent-
ing a, let L = (L,ψ, v, λ) be a smooth q-polycycle in Ω◦34 representing b, and let
N = (N,χ, z, η) be a smooth r-polycycle in Ω◦56 representing c. We will assume
that K,L,N are pairwise transversal in the sense of Section 4.1.1. This assumption
and other transversality conditions imposed below in the course of the proof are
always achieved by a small deformation of K,L,N.

Let Dbc = D(L,N) be the intersection polycycle as defined in Section 4.2.1.
Recall that its underlying manifold with faces, Dbc, consists of all tuples (l, h, n, i) ∈
L × I × N × I such that λ̃(l, h) = η̃(n, i). Let (cb, bc) stand for the underlying
continuous map λ/.η : Dbc → Ω◦54 × Ω◦36 of Dbc. The map cb = λ / η : Dbc → Ω◦54

carries a point (l, h, n, i) to the path I → M which runs from ?5 to η̃(n, i) along

η̃(n,−) in the first half-time and then runs from λ̃(l, h) to ?4 along λ̃(l,−) in the
second half-time. (Here and below, the time parameter of paths always increases
along subintervals of I with constant speed.) The map bc = λ . η : Dbc → Ω◦36

carries (l, h, n, i) to the path I → M which runs from ?3 to λ̃(l, h) along λ̃(l,−)
in the first half-time and then runs from η̃(n, i) to ?6 along η̃(n,−) in the second
half-time. Thus the paths cb(l, h, n, i) and bc(l, h, n, i) are obtained from the paths

η̃(n,−) and λ̃(l,−) by switching direction at the intersection point λ̃(l, h) = η̃(n, i),
see Figure 5.2.1.

?5

?3

?1 ?6

?4

?2

c

b
b

c

Figure 5.2.1. The polycycle Dbc in Ω◦54 × Ω◦36.

We set I◦ = Int(I) = (0, 1), Z = Ω◦36 and view Dbc as a polycycle in Ω◦54 × Z.
It is half-smooth in the sense of Section 5.2.2. Slightly deforming the map κ̃ :
K × I → M adjoint to κ, we can assume Dbc to be half-transversal to K in the
sense of Section 5.2.2. In the sequel, we consider the associated (p+ q+ r+4−2n)-
polychains D−abc = D−(K,Dbc) and D+

abc = D+(K,Dbc) in Ω◦52 × Ω◦14 × Z.

On the one hand, the manifold with faces D−abc underlying the polychain D−abc
consists of all tuples

(5.2.9) (k, s, l, h, n, i, t) ∈ K × I◦ × L× I◦ ×N × I◦ × (0, 1/2]

such that λ̃(l, h) = η̃(n, i) and κ̃(k, s) = η̃(n, i ∗ t). The map

(5.2.10) (ca, a(cb), bc) : D−abc −→ Ω◦52 × Ω◦14 × Z = Ω◦52 × Ω◦14 × Ω◦36
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underlying D−abc is schematically shown in Figure 5.2.2 where one switches direction

at the dotted intersections. The first coordinate ca : D−abc → Ω◦52 sends any point
(5.2.9) to the path I → M which goes from ?5 to η̃(n, i ∗ t) along η̃(n,−) in
half-time and, next, goes from κ̃(k, s) to ?2 along κ̃(k,−) in half-time. The map
a(cb) : D−abc → Ω◦14 carries a point (5.2.9) to the path I → M which goes from
?1 to κ̃(k, s) along κ̃(k,−) in half-time, next, goes from η̃(n, i ∗ t) to η̃(n, i) along

η̃(n,−) in time
[

1
2 , 1 −

1
4(1−t)

]
and, finally, goes from λ̃(l, h) to ?4 along λ̃(l,−) in

time
[
1 − 1

4(1−t) , 1
]
. The map bc : D−abc → Ω◦36 sends a point (5.2.9) to the path

I →M which goes from ?3 to λ̃(l, h) = η̃(n, i) along λ̃(l,−) in half-time and, next,
goes from η̃(n, i) to ?6 along η̃(n,−) in half-time.

On the other hand, the manifold with faces D+
abc underlying the polychain D+

abc

consists of all tuples

(5.2.11) (k, s, l, h, n, i, t) ∈ K × I◦ × L× I◦ ×N × I◦ × [1/2, 1)

such that λ̃(l, h) = η̃(n, i) and κ̃(k, s) = λ̃(l, h ∗ t). The map

(5.2.12) ((cb)a, ab, bc) : D+
abc −→ Ω◦52 × Ω◦14 × Ω◦36

is computed similarly to (5.2.10) and is schematically shown in Figure 5.2.2. We
only note that the map (cb)a : D+

abc → Ω◦52 carries a point (5.2.11) to the path

I →M which goes from ?5 to η̃(n, i) along η̃(n,−) in time
[
0, 1

4t

]
, next, goes from

λ̃(l, h) to λ̃(l, h ∗ t) along λ̃(l,−) in time
[

1
4t ,

1
2

]
and, finally, goes from κ̃(k, s) to ?2

along κ̃(k,−) in the remaining half-time.

Consider also the polychain D
1/2
abc = D

1/2
(
K,Dbc

)
in Ω◦52 ×Ω◦14 × Z. Its under-

lying (p + q + r + 3 − 2n)-manifold with faces D
1/2
abc = D−abc ∩D

+
abc consists of the

tuples (k, s, l, h, n, i, 1/2) such that κ̃(k, s) = λ̃(l, h) = η̃(n, i). The underlying map

(ca, ab, cb) : D
1/2
abc −→ Ω◦52 × Ω◦14 × Ω◦36

is the restriction of the maps (5.2.10) and (5.2.12), see Figure 5.2.2.

?5
?5 ?5

?3 ?3 ?3

?1 ?1 ?1

?2

?4

?6

?2

?4

?6

?2

?4

?6

c a

a

c
b

c

b

c

c

b b

a

a
c

c

b b
b

a

a

Figure 5.2.2. The polychains D−abc, D
1/2
abc and D+

abc.

Cyclically permuting a, b, c, we similarly obtain polychains D−bca, D
1/2
bca,D

+
bca

and D−cab, D
1/2
cab,D

+
cab. Lemma 5.2.5 allows us to rewrite (5.2.8) as the identity

(−1)q+p(n+r)
[
D−abc ∪

1/2
D+
abc

]
+ (−1)r+q(n+p) (p312)∗

[
D−bca ∪

1/2
D+
bca

]
+(−1)p+r(n+q) (p231)∗

[
D−cab ∪

1/2
D+
cab

]
= 0(5.2.13)



5.2. THE JACOBI IDENTITY 89

in H∗(Ω52 × Ω14 × Ω36). The idea of the proof is to show that the six polychains
on the left-hand side of (5.2.13) cancel each other pairwise.

We first explain how to relate the polychains D−abc and D+
bca. Observe that the

manifold with faces D+
bca underlying D+

bca consists of all tuples

(5.2.14) (l, h, n, i′, k, s, t′) ∈ L× I◦ ×N × I◦ ×K × I◦ × [1/2, 1)

such that η̃(n, i′) = κ̃(k, s) and λ̃(l, h) = η̃(n, i′ ∗ t′). We define a smooth map

F : K × I◦ × L× I◦ ×N × I◦ × (0, 1/2]→ L× I◦ ×N × I◦ ×K × I◦ × [1/2, 1)

by the formula

F (k, s, l, h, n, i, t) = (l, h, n, i′(i, t), k, s, t′(i, t))

where i′ : I◦ × (0, 1/2]→ I◦ and t′ : I◦ × (0, 1/2]→ [1/2, 1) are given by

(5.2.15) i′(i, t) = 2it and t′(i, t) = 1− 1− i
2− 4it

.

Observe that the functions i′, t′ satisfy the equations i′ = i ∗ t and i = i′ ∗ t′.
It easily follows that the transformation (i′, t′) : I◦ × (0, 1/2] → I◦ × [1/2, 1) is
a diffeomorphism, so that F is a diffeomorphism carrying D−abc onto D+

bca. The
resulting diffeomorphism

Fabc : D−abc −→ D+
bca

is compatible with the partitions and the weights of the polychains D−abc, D+
bca.

Moreover,

(5.2.16) (ca, a(cb), bc) = p312((ac)b, bc, ca)Fabc : D−abc −→ Ω◦52 × Ω◦14 × Ω◦36

up to homotopy of the second coordinate map compatible with the partitions.

The map Fabc carries D
1/2
abc ⊂ D−abc diffeomorphically onto D

1/2
bca ⊂ D+

bca via the

permutation (k, s, l, h, n, i, 1/2) 7→ (l, h, n, i, k, s, 1/2) and (5.2.16) holds on D
1/2
abc as

an equality of maps (no homotopy needed). One easily constructs a homotopy of

the map a(cb) : D−abc → Ω◦14 into ((ac)b)◦Fabc constant on D
1/2
abc. Since the left-hand

side of (5.2.13) is preserved under such a homotopy of a(cb), we can assume that
(5.2.16) is an equality of maps.

We prove now that

(5.2.17) degFabc = (−1)1+pn+qn+(p+1)(q+r).

The diffeomorphism Fabc carries the open subset R− = D−abc \ D
1/2
abc of D−abc onto

the open subset R+ = D+
bca \D

1/2
bca of D+

bca, and degFabc is equal to the degree of
the restricted diffeomorphism R− → R+. Clearly,

R− = D−abc ∩X
−
abc where X−abc = K × I◦ × L× I◦ ×N × I◦ × (0, 1/2)

and

R+ = D+
bca ∩X

+
bca where X+

bca = L× I◦ ×N × I◦ ×K × I◦ × (1/2, 1).

Consider the maps

X−abc
G−−→M4, (k, s, l, h, n, i, t) 7−→ (κ̃(k, s), η̃(n, i ∗ t), λ̃(l, h), η̃(n, i))

and

X+
bca

G+

−→M4, (l, h, n, i′, k, s, t′) 7−→ (κ̃(k, s), η̃(n, i′), λ̃(l, h), η̃(n, i′ ∗ t′)).
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Since N is transversal to both K and L, the map G− is transversal to diagM ×diagM
in the following sense: for any faces A,B,C of K,L,N respectively, the restriction
of G− to the interior of A × I◦ × B × I◦ × C × I◦ × (0, 1/2) is transversal to the
interior of diagM ×diagM (in the usual sense of differential topology). Similarly,
the map G+ is transversal to diagM ×diagM . Observe that G− = G+F |X−abc and

that the inverse images of diagM ×diagM under the maps G−, G+ are, respectively,
the sets R−, R+. We identify

(5.2.18) νM4(diagM ×diagM ) = pr∗12 νM2(diagM )⊕ pr∗34 νM2(diagM )

where prij : M4 →M2 is the cartesian projection defined by prij(m1,m2,m3,m4) =
(mi,mj). As above, νM2(diagM ) carries the orientation induced by that of diagM ≈
M using our orientation convention, and we give to (5.2.18) the product orienta-
tion. Pulling back the latter orientation along G−, we obtain an orientation on the
normal bundle of R− in X−abc; this oriented normal vector bundle is denoted by ν−.

The normal bundle of R+ in X+
bca is oriented similarly and denoted by ν+. Let T−

be the tangent bundle of R− with the orientation induced by that of ν−. Similarly,
let T+ be the tangent bundle of R+ with the orientation induced by that of ν+.
Clearly, the diffeomorphism (i′, t′) : I◦× (0, 1/2]→ I◦× [1/2, 1) defined by (5.2.15)
is orientation-reversing. Hence degF = (−1)1+(p+1)(q+r), and since F carries R−

onto R+ and induces an orientation-preserving map ν− → ν+, we have

(5.2.19) F ∗abc(T
+) = (−1)1+(p+1)(q+r) T−.

Next, consider the following isomorphisms of oriented vector bundles over R−,
where T stands for the tangent bundle, ν stands for the normal bundle, and pr
denotes the appropriate cartesian projection:

T (K × I × L× I ×N × I × I)|R−
∼= pr∗ T (K × I)|R− ⊕ pr∗ T (L× I ×N × I)|R− ⊕ pr∗ T (I)|R−
∼= pr∗ T (K × I)|R− ⊕ pr∗

(
νL×I×N×I(Dbc)⊕ T (Dbc)

)∣∣
R−
⊕ pr∗ T (I)|R−

∼= (−1)n(p+1) pr∗νL×I×N×I(Dbc)|R− ⊕ pr∗ T (K × I ×Dbc × I)|R−
∼= (−1)n(p+1) pr∗νL×I×N×I(Dbc)|R− ⊕ νK×I×Dbc×I(R−)⊕ T (R−)
∼= (−1)np νK×I×Dbc×I(R−)⊕ pr∗νL×I×N×I(Dbc)|R−︸ ︷︷ ︸

ν−
⊕T (R−).

It follows that T− = (−1)np T (R−). Similarly,

T (L× I ×N × I ×K × I × I)|R+

∼= pr∗ T (L× I)|R+ ⊕ pr∗ T (N × I ×K × I)|R+ ⊕ pr∗ T (I)|R+

∼= pr∗ T (L× I)|R+ ⊕ pr∗
(
νN×I×K×I(Dca)⊕ T (Dca)

)∣∣
R+ ⊕ pr∗ T (I)|R+

∼= (−1)n(q+1) pr∗νN×I×K×I(Dca)|R+ ⊕ pr∗ T (L× I ×Dca × I)|R+

∼= (−1)n(q+1) pr∗νN×I×K×I(Dca)|R+ ⊕ νL×I×Dca×I(R+)︸ ︷︷ ︸
(−1)nν+

⊕T (R+).

Here the sign (−1)n accompanying ν+ is the degree of the permutation map
M2 →M2, (m1,m2) 7→ (m2,m1). It follows that T+ = (−1)nq T (R+). Formula
(5.2.19) and the computations of T+, T− imply (5.2.17).
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Cyclically permuting a, b, c, we obtain diffeomorphisms Fbca : D−bca → D+
cab and

Fcab : D−cab → D+
abc such that

(5.2.20) degFbca = (−1)1+qn+rn+(q+1)(r+p)

and

(5.2.21) degFcab = (−1)1+rn+pn+(r+1)(p+q).

To conclude the proof, we set

D± = D±abc tD
±
bca tD

±
cab and D

1/2 = D+ ∩D− = D
1/2
abc tD

1/2
bca tD

1/2
cab.

Clearly, FcabFbcaFabc = id on D
1/2
abc. Therefore any triangulation of D

1/2
abc extends

uniquely to a triangulation, T 1/2, of D1/2 invariant under Fabc t Fbca t Fcab. (All
triangulations in this argument are supposed to be locally ordered and to fit the
given partitions, cf. Sections 3.1.2 and 3.3.2.) Subdividing, if necessary, T 1/2 we
can assume that it extends to a triangulation, T−, of D−. Transferring T− along
the diffeomorphism Fabc t Fbca t Fcab : D− → D+ we obtain a triangulation, T+,
of D+ also extending T 1/2. We use the triangulations T− and T+ to represent
the left-hand side of (5.2.13) by a (p+ q + r + 4− 2n)-dimensional singular chain.
According to (5.2.17), (5.2.20) and (5.2.21), every singular simplex contributed by
a top-dimensional simplex of T− cancels with the corresponding singular simplex
in T+. Therefore the singular chain in question is equal to zero and so is the
left-hand side of (5.2.13). �

5.2.4. Proof of Theorem 5.1.1 (the end). Let {{−,−,−}} ∈ End(A⊗3) be
the tribracket induced by the intersection bibracket {{−,−}} in A = A(C). Pick any
points ?1, . . . , ?6 ∈ ∂M and any homology classes a ∈ Hp(Ω12), b ∈ Hq(Ω34) and
c ∈ Hr(Ω56). We need to show that the tensor

{{a, b, c}} =
{{
a, {{b, c}}′

}}
⊗ {{b, c}}′′(5.2.22)

+(−1)(p+n)(q+r)P312

({{
b, {{c, a}}′

}}
⊗ {{c, a}}′′

)
+(−1)(p+q)(r+n)P231

({{
c, {{a, b}}′

}}
⊗ {{a, b}}′′

)
vanishes, where P312,P231 ∈ End(A⊗3) are the graded permutations defined in
Section 1.2.1. For any i, j, k, l, u, v ∈ {1, . . . , 6}, let

$ij,kl : H∗(Ωij)⊗H∗(Ωkl) −→ H∗(Ωij × Ωkl),

$ij,kl,uv : H∗(Ωij)⊗H∗(Ωkl)⊗H∗(Ωuv) −→ H∗(Ωij × Ωkl × Ωuv)

be the linear maps induced by the cross product. By definition of the intersection
bibracket and Lemma 5.2.4,

$52,14,36

({{
a, {{b, c}}′

}}
⊗ {{b, c}}′′

)
= $52,14

({{
a, {{b, c}}′

}})
× {{b, c}}′′

= Υ12,54

(
a⊗ {{b, c}}′

)
× {{b, c}}′′

= Υ12,5436

(
a⊗

(
{{b, c}}′ × {{b, c}}′′

) )
= Υ12,5436 (a⊗$54,36 ({{b, c}}))
= Υ12,5436 (a⊗Υ34,56(b⊗ c)) .

Cyclically permuting a, b, c, we also obtain

$52,14,36P312

({{
b, {{c, a}}′

}}
⊗ {{c, a}}′′

)
= (p312)∗$14,36,52

({{
b, {{c, a}}′

}}
⊗ {{c, a}}′′

)
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= (p312)∗Υ34,1652 (b⊗Υ56,12(c⊗ a))

and

$52,14,36P231

({{
c, {{a, b}}′

}}
⊗ {{a, b}}′′

)
= (p231)∗$36,52,14

({{
c, {{a, b}}′

}}
⊗ {{a, b}}′′

)
= (p231)∗Υ56,3214 (c⊗Υ12,34(a⊗ b)) .

Combining the last three identities, formula (5.2.22) and Lemma 5.2.6, we obtain
that $52,14,36 ({{a, b, c}}) = 0. We conclude that {{a, b, c}} = 0.

5.3. Computations and examples

We compute Υ for spherical homology classes of complementary dimensions
and for 0-dimensional homology classes. We use these results to determine the
intersection bibracket in two examples.

5.3.1. Intersection of spheres. Assume that n = dim(M) ≥ 4. We compute
the operation Υ on the loop homology classes arising from spheres of complementary
dimensions. Let us fix a base point sk in the k-sphere Sk for every k ≥ 1. For
x ∈ ∂M , we let πk(M,x) =

[
(Sk, sk), (M,x)

]
be the k-th homotopy group of M

at x. For x, y ∈ ∂M , we set π1(M,x, y) = π0(Ω(M,x, y)).
Consider base points ?, ?′ in ∂M and integers p, q ≥ 2 such that p + q = n =

dim(M). Let Υπ
?,?′ be the following composition:

πp(M,?)× πq(M,?′)

∂p×∂q

��

Υπ
?,?′

((

Hp−1(Ω?)⊗Hq−1(Ω?′)
Υ // H0(Ω?′? × Ω??′) ' K[π1(M,?′, ?)]⊗K[π1(M,?, ?′)].

Here Ω? = Ω(M,?, ?), Ω??′ = Ω(M,?, ?′), ∂∗ : π∗(M,?) → H∗−1(Ω?) is the con-
necting homomorphism of Section 5.1.3, and similar notation applies with ? and ?′

exchanged. The following lemma computes Υπ
?,?′ when ? 6= ?′.

Lemma 5.3.1. Assume ? 6= ?′. Let α : (Sp, sp) → (M,?) and β : (Sq, sq) →
(M,?′) be continuous maps such that α−1(∂M) = {sp}, β−1(∂M) = {sq} and
α|Sp\{sp}, β|Sq\{sq} are transversal smooth maps. Then

(5.3.1) Υπ
?,?′([α], [β]) = (−1)n(p+1)+1

∑
(x,y)

ε(x, y) [βyα
−1
x ]⊗ [αxβ

−1
y ].

Here: the sum runs over all (x, y) ∈ Sp × Sq such that α(x) = β(y); ε(x, y) is the
sign of the product orientation in α∗(TxS

p) ⊕ β∗(TySq) = Tα(x)M with respect to
the orientation of M ; αx is the composition of α with a path from sp to x in Sp

and βy is the composition of β with a path from sq to y in Sq.

Proof. For k ≥ 1, let hk : Ik → Sk be a continuous map such that hk(∂Ik) =
{sk}, hk|Int(Ik) is smooth and the quotient map h̄k : Ik/∂Ik → Sk is a degree 1

homeomorphism. Then αhp : Ip = Ip−1 × I → M is adjoint to a continuous
map ωα : Ip−1 → Ω? which carries ∂Ip−1 to the constant path e?. Let ω̄α :
Ip−1/∂Ip−1 → Ω? be the quotient map. Then

∂p ([α]) = (ω̄α)∗
([
Ip−1/∂Ip−1

])
= [K]
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where K =
(
Ip−1, θp−1, 1, ωα

)
is the polycycle in Ω? with weight 1 and with par-

tition θp−1 defined as the product of p − 1 copies of the partition of I identifying

{0} to {1}. Similarly, ∂q ([β]) = [L] for L =
(
Iq−1, θq−1, 1, ωβ

)
.

The polycycles K and L are admissible in the sense of Section 4.3.2 where
?1 = ?2 = ?, ?3 = ?4 = ?′, U = Int(Ip−1)× Int(I) and V = Int(Iq−1)× Int(I). We
can therefore consider the intersection polychain D(K,L) and by Lemma 4.3.3, it

represents Υ̃(〈K〉 ⊗ 〈L〉). Then, using Lemma 4.4.1, we get

Υπ
?,?′([α], [β]) = Υ([K], [L]) = (−1)(q−1)+n(p−1)

[
Υ̃ ( 〈K〉 ⊗ 〈L〉 )

]
= (−1)q+n(p+1)+1

[
D(K,L)

]
.

The intersection polycycle D(K,L) is 0-dimensional, and its points bijectively cor-
respond to the pairs (x, y) ∈ Sp × Sq such that α(x) = β(y). Such a pair (x, y)
contributes

ε̃(x, y)
(
βyᾱx, αxβ̄y

)
∈ Ω?′? × Ω??′

to D(K,L) where αx, βy are paths as in the statement of the lemma, ᾱx is the
composition of α with a path from x to sp in Sp, and β̄y is the composition of β
with a path from y to sq in Sq. Here ε̃(x, y) is the sign of the linear isomorphism

T(x,y) (Sp × Sq)
(α×β)∗

// T(z,z) (M ×M) // T(z,z)(M×M)

T(z,z) diagM
= νM×M (diagM )(z,z),

where z = α(x) = β(y), T(x,y)(S
p×Sq) = TxS

p⊕TySq has the product orientation
and νM×M (diagM ) has the orientation induced from that of diagM ≈M . The linear
map T(z,z)(M ×M) = TzM ⊕ TzM → TzM defined by (u, v) 7→ u − v induces an
orientation-preserving isomorphism νM×M (diagM )(z,z) → TzM . Composing with
the linear isomorphism above, we obtain the map α∗⊕(−β∗) : TxS

p⊕TySq → TzM
whose degree is (−1)qε(x, y). Therefore ε̃(x, y) = (−1)qε(x, y). Thus,

Υπ
?,?′([α], [β]) = (−1)n(p+1)+1

∑
(x,y)

ε(x, y)
[ (
βyᾱx, αxβ̄y

) ]
= (−1)n(p+1)+1

∑
(x,y)

ε(x, y)
[
βyᾱx

]
⊗
[
αxβ̄y

]
.

Since p ≥ 2, the path αx is well defined up to homotopy rel ∂I and ᾱx is homotopic
to α−1

x . Similar claims hold for β since q ≥ 2. This yields (5.3.1). �

If we consider a single point ? in the boundary of M , then we can similarly
compute the linear map

Υπ = Υπ
?,? : πp(M,?)× πq(M,?) −→ K[π1(M,?)]⊗K[π1(M,?)].

Fix a path ς : I → ∂M from ? to a different point ?′ ∈ ∂M , and consider maps
α : (Sp, sp) → (M,?) and β : (Sq, sq) → (M,?′) satisfying the conditions of
Lemma 5.3.1. Transporting β along ς−1, we obtain a map ς−1β : (Sq, sq)→ (M,?).
Applying Lemmas 4.4.2 and 5.3.1, we obtain that

Υπ([α], [ς−1β]) = Υ
(
∂p[α], ς(∂q[β])ς−1

)
= ς Υ

(
∂p[α], ∂q[β]

)
ς−1

= ς Υπ
?,?′([α], [β])ς−1

= (−1)n(p+1)+1
∑
(x,y)

ε(x, y) [ςβyα
−1
x ]⊗ [αxβ

−1
y ς−1].(5.3.2)
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This computation implies that the map Υπ is determined by the pairing

(aug⊗ id)Υπ : πp(M,?)× πq(M,?) −→ K[π1(M,?)],

where aug : K[π1(M,?)]→ K is the addition of coefficients. Note that

(5.3.3) (aug⊗ id)Υπ([α], [ς−1β]) = (−1)n(p+1)+1
∑
(x,y)

ε(x, y) [αxβ
−1
y ς−1].

The pairing on the right-hand side is the well known “geometric intersection” of
spherical cycles or the “Reidemeister pairing”, see [Ke] or [Wa, Section 5].

5.3.2. Intersection of arcs with spheres. Assume that n = dim(M) ≥ 3.
We fix three points ?1, ?2, ?3 ∈ ∂M and consider the map Υπ

12,3 defined by the
following composition:

π1(M,?1, ?2)× πn−1(M,?3)

∂1×∂n−1

��

Υπ12,3

))

H0(Ω12)⊗Hn−2(Ω33)
Υ // H0(Ω32 × Ω13) ' K

[
π1(M,?3, ?2)

]
⊗K

[
π1(M,?1, ?3)

]
.

As in the previous sections, Ωij = Ω(M,?i, ?j) for any i, j ∈ {1, 2, 3}. Lemma 5.3.1
easily adapts to this setting and yields the following computation of Υπ

12,3.

Lemma 5.3.2. Let α ∈ Ω◦12 and let β : (Sn−1, sn−1)→ (M,?3) be a continuous
map such that β−1(∂M) = {sn−1}. Assume that ?1 6= ?3, ?2 6= ?3 and that α|(0,1),
β|Sn−1\{sn−1} are transversal smooth maps. Then

Υπ
12,3([α], [β]) = −

∑
(x,y)

ε(x, y) [βyαx1]⊗ [α0xβ
−1
y ].

Here: the sum runs over all (x, y) ∈ [0, 1] × Sn−1 such that α(x) = β(y); ε(x, y)
is the sign of the product orientation in α∗(Tx[0, 1]) ⊕ β∗(TySn−1) = Tα(x)M with
respect to the orientation of M ; α0x (respectively αx1) is the path running along α
from ?1 to α(x) (respectively from α(x) to ?2) in the positive direction and βy is
the composition of β with a path from sn−1 to y in Sn−1.

Lemma 5.3.2 can be adapted to the cases where ?1 = ?3 and/or ?2 = ?3.
Besides, we can similarly define an operation

Υπ
1,23 : πn−2(M,?1)× π1(M,?2, ?3) −→ K

[
π1(M,?2, ?1)

]
⊗K

[
π1(M,?1, ?3)

]
and compute it as in Lemma 5.3.2.

5.3.3. A simply connected example. Fix 2g integers p1, q1, . . . , pg, qg ≥ 2
such that p1 + q1 = · · · = pg + qg = n. Consider the closed smooth n-manifold

(5.3.4) W = (Sp1 × Sq1) ] · · · ] (Spg × Sqg )

with the product orientation on each summand, and assume that M = W \ Int(D)
where D is a closed n-ball smoothly embedded in W . Fix a point ? ∈ ∂M and
consider the Pontryagin algebra A? = H∗(Ω?) where Ω? = Ω(M,?, ?). We now
compute the intersection bibracket in A?.

For an appropriate choice of D, of the base points {sk ∈ Sk}k, and of the balls
along which the connected sums are performed in (5.3.4), the sets

Xi = Spi × {sqi} ⊂ Spi × Sqi and Yi = {spi} × Sqi ⊂ Spi × Sqi
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are embedded spheres in M , for all i = 1, . . . , g. Since M is simply connected, these
spheres define certain elements xπi ∈ πpi(M,?) and yπi ∈ πqi(M,?), respectively.
Consider the corresponding elements of the Pontryagin algebra

xi = ∂pi(x
π
i ) ∈ Api−1

? , yi = ∂qi(y
π
i ) ∈ Aqi−1

? .

SinceM deformation retracts to a wedge of 2g spheres isotopic toX1, Y1, . . . , Xg, Yg,
it follows from [BS, III.1.B] (or, alternatively, from [AH, Corollary 2.2]) that x1, y1,
. . . , xg, yg freely generate the unital graded algebra A?.

In particular, if K = Z, then A? is a free abelian group. Therefore the condition
(5.1.2) is satisfied for any ground ring K. Hence the intersection bibracket {{−,−}}
in A? is defined for any K, and is fully determined by its values on the generators.
These values can be computed from the formula (5.3.2): for any i, j = 1, . . . , g,

(5.3.5) {{xi, yj}} = δij(−1)qi(pi+1)+1 1⊗ 1, {{yj , xi}} = δij(−1)pi+1 1⊗ 1,

(5.3.6) {{xi, xj}} = 0, {{yi, yj}} = 0.

Here we use the assumption that the spheres Xi, Yj have codimension ≥ 2 in M
and so can be made disjoint from the interiors of arcs connecting them to ?. As
a consequence, we observe that the bibracket {{−,−}} is a graded version of the
bibracket associated by Van den Bergh [VdB] with the (double of the) quiver Qg
having a single vertex and g edges.

The graded module Ǎ? = A?/[A?, A?] is freely generated by words in the letters
x1, y1, . . . , xg, yg, subject to the cyclic relations w1w2 = (−1)|w1| |w2|w2w1 for any
words w1, w2 where |wi| is the sum of the degrees of the letters appearing in wi.
The (2−n)-graded Lie bracket 〈−,−〉 in Ǎ? induced by {{−,−}} is a graded version
of the necklace Lie bracket associated to Qg, see [BLb, G].

For any integer N ≥ 1, the Gerstenhaber bracket {−,−} in (A?)
+
N induced by

{{−,−}} can be computed from (5.3.5), (5.3.6). In particular, (A?)
+
1 = Com(A?)

is the unital commutative graded algebra with free generators x1, y1, . . . , xg, yg in
degrees |xi| = pi − 1, |yi| = qi − 1, and for any i, j = 1, . . . , g,

{xi, yj} = (−1)qi(pi+1)+1δij , {yj , xi} = (−1)pi+1δij , {xi, xj} = 0, {yi, yj} = 0.

The bracket {−,−} is a graded version of the standard Poisson bracket in the
symmetric algebra of a free module of rank 2g equipped with a symplectic form.

5.3.4. A non-simply connected example. Let n ≥ 3. We compute the
intersection bibracket in the Pontryagin algebra of the exterior of a ball in W =
S1 × Sn−1. We endow W with the product orientation and set

X = S1 × {sn−1} ⊂W and Y = {s1} × Sn−1 ⊂W
where s1 ∈ S1 and sn−1 ∈ Sn−1 are the base points. As above, assume that
M = W \ Int(D) where D is a closed n-ball smoothly embedded in W \ (X ∪ Y ).
Pick a point ? ∈ ∂M = ∂D and connect it to the point s = (s1, sn−1) ∈ Int(M)
by a path γ : I → M such that γ−1(X ∪ Y ) = {1}. Up to homotopy relative to
the endpoints, there are two such paths; we take the path γ such that a positive
tangent vector of γ followed by a positively oriented basis of Tsn−1S

n−1 yields a
positively oriented basis of TsM , see Figure 5.3.1. Transporting X and Y along γ,
we obtain certain homotopy classes xπ ∈ π1(M,?) and yπ ∈ πn−1(M,?). Consider
the corresponding elements

x = ∂1(xπ) ∈ A0
? and y = ∂n−1(yπ) ∈ An−2

?
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of the algebra A? = H∗(Ω?). Note that x is invertible in A0
? ' K[π1(M,?)]. We

claim that the unital graded algebra A? is generated by x±1 and y subject to the
only relation xx−1 = 1. Indeed,

A? =
⊕
i∈Z

xiH∗(Ω
null
? )

where Ωnull
? is the connected component of Ω? consisting of null-homotopic loops.

The space Ωnull
? can be identified with the loop space of the universal cover of M .

This cover has the homotopy type of a wedge of countably many copies of Sn−1

since M deformation retracts to X ∪ Y ∼= S1 ∨ Sn−1. Therefore, the unital graded
algebra H∗(Ω

null
? ) is freely generated by the elements {xiyx−i}i∈Z, and the claim

above easily follows.

?

?′

ζ
γ

Y

s

�
X

∂D

Figure 5.3.1. The manifold M = (S1 × Sn−1) \ Int(D).

In particular, if K = Z, then A? is a free abelian group. Therefore the inter-
section bibracket {{−,−}} in A? is defined for any ground ring K. To determine
{{−,−}}, it suffices to compute its values on the generators x, y. For degree reasons,

(5.3.7) {{x, x}} = 0.

Let ς be an arc in ∂M connecting ? to another point ?′. By Lemma 5.3.2, we obtain{{
x, ς−1yς

}}
= −ς−1x⊗ ς,

{{
ς−1yς, x

}}
= ς ⊗ ς−1x.

This implies the equalities

(5.3.8) {{x, y}} = −x⊗ 1, {{y, x}} = 1⊗ x.
Observe next that x−1yx and ς−1yς are images under the connecting homomor-
phism of certain elements of πn−1(M,?) and πn−1(M,?′) that can be represented
by disjoint embedded spheres. It follows that

{{
x−1yx, ς−1yς

}}
= 0 which implies

that
{{
x−1yx, y

}}
= 0. Using the Leibniz rules and (5.3.8), we deduce that

(5.3.9) {{y, y}} = 1⊗ y − y ⊗ 1.

Using (5.3.7)–(5.3.9), one can also compute the graded Lie bracket 〈−,−〉 in Ǎ?
and the Gersthenhaber bracket {−,−} in (A+

? )N for any integer N ≥ 1.



CHAPTER 6

Properties of the intersection bibracket

In this chapter, M is a smooth oriented connected manifold of dimension n ≥ 2
such that ∂M 6= ∅ and the condition (5.1.2) is satisfied.

6.1. The scalar intersection form

We derive from the intersection bibracket of M a scalar intersection form and
compute it in terms of usual homology intersections. We begin with algebraic
preliminaries.

6.1.1. The scalar form induced by a bibracket. Consider an arbitrary
graded category C and the associated graded algebra A = A(C), see Section 2.2.1.
Given an augmentation ε : A → K and a d-graded bibracket {{−,−}} in C with
d ∈ Z, we define the induced scalar form • : A× A→ K by a • b = (ε⊗ ε)({{a, b}})
for any a, b ∈ A. Observe that

a • (bc) = (a • b) ε(c) + ε(b) (a • c),
for any a ∈ A, b ∈ HomC(X,Y ), c ∈ HomC(Y,Z) with X,Y, Z ∈ Ob(C); similarly,

(ab) • c = ε(a) (b • c) + (a • c) ε(b)
for any c ∈ A, a ∈ HomC(X,Y ), b ∈ HomC(Y,Z) with X,Y, Z ∈ Ob(C). Further-
more, if the bibracket {{−,−}} is d-antisymmetric, then a • b = −(−1)|a|d |b|d b • a
for any homogeneous a, b ∈ A.

6.1.2. The scalar form induced by the intersection bibracket. The
path homology category C = C(M) of the manifold M has a canonical augmentation
ε : A(C)→ K obtained as the direct sum over all ?, ?′ ∈ ∂M of the compositions

H∗
(
Ω(M,?, ?′)

)
−→ H0

(
Ω(M,?, ?′)

)
−→ K,

where the left arrow is the obvious projection and the right arrow carries the ho-
mology classes of all points to 1. By the previous subsection, this augmentation
together with the intersection bibracket induce a bilinear form • : A(C)×A(C)→ K.

We compute • in terms of standard homological intersections in M . For sim-
plicity, we assume in the rest of this section that n ≥ 3, though the case n = 2 may
be considered similarly. For any points ?1, ?2, ?3, ?4 ∈ ∂M , we define a linear map

(6.1.1) H∗(M, {?1, ?2})⊗H∗(M, {?3, ?4})
�
−→ K.

It suffices to define the restriction of � to Hk ⊗Hl for any k, l ≥ 0. If k + l 6= n,
then this restriction is equal to zero. Suppose now that k + l = n. When
{?1, ?2}∩{?3, ?4} = ∅, the form � is the standard homological intersection, see, for
example, [Br]. When {?1, ?2}∩ {?3, ?4} 6= ∅, we separate two cases. If k ≥ 2, then
Hk(M, {?1, ?2}) is canonically isomorphic to Hk(M) and the pairing � is induced

97
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by the homological intersection Hk(M) ⊗ Hl(M, {?3, ?4}) → K. The case l ≥ 2
is treated similarly using that Hl(M, {?3, ?4}) is canonically isomorphic to Hl(M).
Note that the assumption k + l = n ≥ 3 guarantees that k ≥ 2 or l ≥ 2. If both
these inequalities hold true, then the two definitions above give the same pairing.

The next lemma yields a version of the homological suspension homomorphism
due to Serre [Se, §IV.5].

Lemma 6.1.1. Let Ω = Ω(M,?, ?′) with ?, ?′ ∈ ∂M . There is a unique ho-
momorphism Σ : H∗(Ω) → H∗+1(M, {?, ?′}) such that for every polycycle K =
(K,ϕ, u, κ) in Ω, we have

(6.1.2) Σ([K]) =
[
(K × I, ϕ× τ, u× 1, κ̃)

]
where τ is the trivial partition on I = [0, 1].

Proof. The uniqueness of Σ is a direct consequence of Theorem 3.3.4. To
prove the existence, define a continuous map ev : Ω → M by ev(α) = α(1/2) and
set Ω∂ = ev−1({?, ?′}). The formula

d(α, s)(t) =

 ? if t ∈ [0, 1/2− s/2] ,
α(s+ 2t− 1) if t ∈ [1/2− s/2, 1− s/2] ,
?′ if t ∈ [1− s/2, 1]

defines a continuous map d : (Ω× I,Ω× ∂I)→
(
Ω,Ω∂

)
. Let

∆ : H∗(Ω) −→ H∗+1

(
Ω,Ω∂

)
be the linear map sending any x ∈ H∗(Ω) to d∗(x× [I, ∂I]) (the definition of ∆ is
inspired by [CS1, §5] and [KK1, Remark 3.2.3]). Finally, we set Σ = ev∗∆. To
check (6.1.2), observe that the fundamental class [I, ∂I] ∈ H1(I, ∂I) is represented
by the 1-dimensional polycycle I = (I, τ, 1, id : I → I) relative to ∂I. Lemma 3.3.5
implies that for any polycycle K = (K,ϕ, u, κ) in Ω,

Σ([K]) = ev∗ d∗([K]× [I])

= (ev d)∗ [K× I] =
[
(K × I, ϕ× τ, u× 1, κ̃)

]
. �

We can now state the main result of this section.

Theorem 6.1.2. For any ?1, ?2, ?3, ?4 ∈ ∂M , the following diagram commutes:

H∗
(
Ω(M,?1, ?2)

)
⊗H∗

(
Ω(M,?3, ?4)

) • //

−(−1)n|−|Σ⊗Σ

��

K .

H∗
(
M, {?1, ?2}

)
⊗H∗

(
M, {?3, ?4}

) �

FF

The proof of Theorem 6.1.2 proceeds in three steps. First we consider arbitrary
disjoint subsets ∂−M , ∂+M of ∂M and the standard homology intersection form

H∗(M,∂−M)⊗H∗(M,∂+M) −→ H∗(M).

We denote this form by � and compute it in terms of polycycles. Secondly, we
relate � to the operation Υ. Finally, we deduce Theorem 6.1.2.

Lemma 6.1.3. Let ∂−M , ∂+M be disjoint subsets of ∂M . Let K = (K,ϕ, u, κ)
be a smooth p-polycycle in M relative to ∂−M , let L = (L,ψ, v, λ) be a smooth
q-polycycle in M relative to ∂+M such that the map κ × λ : K × L → M ×M
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is transversal to diagM in the sense of Section 4.1.1. Let D = (κ × λ)−1(diagM )
and let prK : K × L → K be the cartesian projection. Then D is a manifold with
faces and, for some orientation, partition θ, and weight w on D, the polychain
D = (D, θ, w, κ prK |D) is a polycycle such that

(6.1.3) [K]� [L] = (−1)q(p+n)[D] ∈ Hp+q−n(M).

Proof. The transversality assumption ensures that D inherits from K × L a
structure of a manifold with corners, see [MrOd]. The same argument as at the
beginning of Section 4.2.1 shows that D is a manifold with faces. We orient D so
that the induced orientation of its normal bundle in K × L is the pull-back of the
orientation of the normal bundle of diagM ≈ M in M ×M via (κ × λ)|D. The
partition θ of D is defined as follows: the faces of D are the connected components
of the intersections (F × G) ∩ D where F and G range over faces of K and L
respectively; two such faces C ⊂ (F × G) ∩ D and C ′ ⊂ (F ′ × G′) ∩ D are of
the same type if F, F ′ are of the same type, G,G′ are of the same type, and
(ϕF,F ′×ψG,G′)(C) = C ′. Then θC,C′ = (ϕF,F ′×ψG,G′)|C . The weight w ofD carries
a connected component Z of D to u(X)v(Y ) where X,Y are connected components
of K,L respectively, such that Z ⊂ X × Y . Then D = (D, θ, w, κprK |D) is a
polycycle satisfying (6.1.3).

We leave the general case of this claim to the reader and prove it only under
the following assumptions: K and L are transversal compact oriented smooth sub-
manifolds of M such that ∂K = ∂M ∩ K ⊂ ∂−M and ∂L = ∂M ∩ L ⊂ ∂+M ;
the partitions ϕ of K and ψ of L are trivial; the weights u : π0(K) → K and
v : π0(L)→ K send all connected components to 1 ∈ K; the maps κ : K →M and
λ : L→M are the inclusions. Under these assumptions, we have

[K]� [L] = [K]� [L] = [K ∩ L]

where [K] ∈ H∗(M,∂−M), [L] ∈ H∗(M,∂+M) and [K ∩ L] ∈ H∗(M) are the
fundamental classes, and K ∩ L is oriented so that

(6.1.4) νM (K ∩ L) = νM (K)|K∩L ⊕ νM (L)|K∩L
(this agrees with the orientation rule in [Br, p. 375]). Since D = (K × L) ∩ diagM
corresponds to K ∩ L ⊂ M under the standard identification diagM ≈ M , we
need only to compare the orientation of D with that of K ∩ L. Note the following
orientation-preserving isomorphisms of oriented vector bundles:

T (M2)|K×L = pr∗K
(
T (M)|K

)
⊕ pr∗L

(
T (M)|L

)
∼= pr∗K νM (K)⊕ pr∗K T (K)⊕ pr∗L νM (L)⊕ pr∗L T (L)

∼= (−1)p(q+n) pr∗K νM (K)⊕ pr∗L νM (L)⊕ pr∗K T (K)⊕ pr∗L T (L)

∼= (−1)p(q+n) pr∗K νM (K)⊕ pr∗L νM (L)⊕ T (K × L)

where prK : K × L → K and prL : K × L → L are the cartesian projections.
Restricting to D ⊂ K × L, we obtain

T (M2)|D ∼= (−1)p(q+n) (pr∗K νM (K)) |D ⊕ (pr∗L νM (L)) |D ⊕ T (K × L)|D
∼= (−1)p(q+n)p∗(νM (K)|K∩L)⊕ p∗(νM (L)|K∩L)⊕ T (K × L)|D
∼= (−1)p(q+n)p∗νM (K ∩ L)⊕ νK×L(D)⊕ T (D)

where p is the identification diffeomorphism D → K ∩ L. On the other hand,

T (M2)|D ∼= νM×M (diagM )|D ⊕ T (diagM )|D
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∼= νM×M (diagM )|D ⊕ p∗ (T (M)|K∩L)
∼= νM×M (diagM )|D ⊕ p∗νM (K ∩ L) ⊕ p∗T (K ∩ L)

∼= (−1)(p+q)np∗νM (K ∩ L)⊕ νM×M (diagM )|D ⊕ p∗T (K ∩ L).

Since νK×L(D) = νM×M (diagM )|D as oriented vector bundles, we deduce that

T (D) = (−1)p(q+n) · (−1)(p+q)n p∗T (K ∩ L) = (−1)q(p+n)p∗T (K ∩ L)

and (6.1.3) follows. �

Lemma 6.1.4. Let, under the assumptions of Lemma 6.1.3, ?1, ?2 ∈ ∂−M and
?3, ?4 ∈ ∂+M . Let ε1 be the composition of the augmentation ε : H∗(Ω32×Ω14)→ K
with the linear map K → H∗(M) sending 1 ∈ K to [?1] ∈ H0(M). Then the
following diagram commutes:

H∗(Ω12)⊗H∗(Ω34)
Υ12,34

//

−(−1)n|−|Σ⊗Σ

��

H∗(Ω32 × Ω14)

ε1

��

H∗(M,∂−M)⊗H∗(M,∂+M)
�

// H∗(M).

Proof. Let pr32 : Ω32 × Ω14 → Ω32 be the cartesian projection. Clearly, the
map ev : Ω32 →M is homotopic to the constant map α 7→ ?3 so that, in homology,
(ev pr32)∗ = ε1. Pick now any a ∈ Hp(Ω12) and b ∈ Hq(Ω34) with p, q ≥ 0. Let
K = (K,ϕ, u, κ) be a smooth reduced p-polycycle in Ω◦12 and let L = (L,ψ, v, λ)
be a smooth reduced q-polycycle in Ω◦34 transversely representing the pair of face
homology classes (〈a〉 , 〈b〉). Set D(K,L) = (D, θ, w, κ/.λ). Then

ε1Υ12,34(a⊗ b) = (−1)q+np(ev pr32)∗([D(K,L)])

= (−1)q+np ev∗
[
(D, θ, w, κ / λ)

]
= (−1)q+np

[
(D, θ, w, κ̃ ◦ pr |D)

]
where pr : K × I × L × I → K × I is the cartesian projection. We deduce from
Lemmas 6.1.1 and 6.1.3 that

−(−1)np Σ(a)� Σ(b)

= −(−1)np
[
(K × I, ϕ× τ, u× 1, κ̃)

]
�
[
(L× I, ψ × τ, v × 1, λ̃)

]
= (−1)1+np+(q+1)(p+1+n)

[
(D, θ, w, κ̃ ◦ pr |D)

]
= (−1)1+q+(q+1)(p+1+n)ε1Υ12,34(a⊗ b) = (−1)(q+1)(p+n)ε1Υ12,34(a⊗ b).

Since (q + 1)(p+ n) is even if p+ q = n− 2 and ε1Υ12,34(a⊗ b) = 0 otherwise, we
obtain the claim of the lemma. �

We can now complete the proof of Theorem 6.1.2. Set ∂−M = {?1, ?2} and
∂+M = {?3, ?4}. Suppose first that ∂−M ∩ ∂+M = ∅. The desired claim is
obtained by combining the diagram in Lemma 6.1.4 with the obvious diagram

H∗(Ω32 × Ω14) '
$32,14

//

ε1

��

H∗(Ω32)⊗H∗(Ω14)

ε⊗ε
��

H∗(M) // K
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where $32,14 denotes the inverse of the cross product isomorphism as before, and
the bottom horizontal arrow is the standard augmentation. To handle the case
{?1, ?2} ∩ {?3, ?4} 6= ∅, consider a smooth isotopy {φt : M → M}t∈I of φ0 = idM
which is constant outside of a small neighborhood of the points ?1, ?2 and such
that the point ?′i = φ1(?i) lies in ∂M \ {?3, ?4} for i = 1, 2. The diffeomorphism
φ1 : (M,?1, ?2)→ (M,?′1, ?

′
2) induces horizontal isomorphisms in the commutative

diagram

H∗
(
Ω(M,?1, ?2)

)) ' //

−(−1)n|−|Σ

��

H∗
(
Ω(M,?′1, ?

′
2)
)

−(−1)n|−|Σ

��

H∗
(
M, {?1, ?2}

) ' // H∗
(
M, {?′1, ?′2}

)
.

Note that the upper horizontal arrow coincides with the isomorphism (ς1, ς2)# de-
fined in Section 4.4.1 where ςi : I → ∂M is the path t 7→ φt(?i). Tensoring this
diagram by the obvious commutative diagram

H∗
(
Ω(M,?3, ?4)

)) id //

Σ

��

H∗
(
Ω(M,?3, ?4)

)
Σ

��

H∗
(
M, {?3, ?4}

) id // H∗
(
M, {?3, ?4}

)
we obtain a commutative diagram

H∗
(
Ω(M,?1, ?2)

)
⊗H∗

(
Ω(M,?3, ?4)

) ' //

−(−1)n|−|Σ⊗Σ

��

H∗
(
Ω(M,?′1, ?

′
2)
)
⊗H∗

(
Ω(M,?3, ?4)

)
−(−1)n|−|Σ⊗Σ

��

H∗
(
M, {?1, ?2}

)
⊗H∗

(
M, {?3, ?4}

) ' // H∗
(
M, {?′1, ?′2}

)
⊗H∗

(
M, {?3, ?4}

)
.

By the first part of the proof, we have the diagram in Theorem 6.1.2 for the points
?′1, ?

′
2, ?3, ?4. Combining it with the diagram above we obtain the required di-

agram. Indeed, according to (4.4.3), the upper line represents the scalar form
• : H∗

(
Ω(M,?1, ?2)

)
⊗H∗

(
Ω(M,?3, ?4)

)
→ K. In the bottom line we obviously get

� : H∗
(
M, {?1, ?2}

)
⊗H∗

(
M, {?3, ?4}

)
→ K.

6.2. The reducibility

The path homology category C = C(M) has a natural structure of a graded
Hopf category, which generalizes the usual Hopf algebra structure on the Pontryagin
algebra. The comultiplication ∆ in C is the direct sum over all ?, ?′ ∈ ∂M of the
linear maps

H∗
(
Ω(M,?, ?′)

)
−→ H∗

(
Ω(M,?, ?′)

)
⊗H∗

(
Ω(M,?, ?′)

)
induced by the diagonal maps Ω(M,?, ?′) → Ω(M,?, ?′) × Ω(M,?, ?′). (Note that
we use here the condition (5.1.2).) The counit ε in C is the augmentation defined
in Section 6.1.1. For ?, ?′ ∈ ∂M , the inversion of paths induces a homeomorphism
Ω(M,?, ?′) → Ω(M,?′, ?) which in its turn induces a graded linear isomorphism
H∗(Ω(M,?, ?′)) → H∗(Ω(M,?′, ?)); the direct sum of these isomorphisms over all
?, ?′ ∈ ∂M defines an antipode s in C. It is well-known that the path homology
category C with this data is a cocommutative Hopf category.
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Lemma 6.2.1. The intersection bibracket in C = C(M) is reducible.

Proof. Let A = A(C) be the graded algebra associated with C and let Λ =
Λ({{−,−}}) be the map (2.3.1) associated with the intersection bibracket {{−,−}}
in C. We must show that Λ(a, b) ∈ ∆(A) for any a, b ∈ A. Since Λ is bilinear,
it suffices to consider the case where a ∈ Hp(Ω12) and b ∈ Hq

(
Ω34

)
for some

p, q ≥ 0. Here Ωij = Ω(M,?i, ?j), and ?1, ?2, ?3, ?4 are four points in ∂M . Observe
that a path in ∂M starting from ?2 represents a certain element v ∈ A0 and, by
Lemma 2.3.2,

Λ(av, b) = Λ(a, b) ε(v) + ∆(a)Λ(v, c) = Λ(a, b).

Similarly, a path in ∂M ending at ?1 represents a certain u ∈ A0 and

Λ(ua, b) = Λ(u, b) ε(a) + ∆(u)Λ(a, b) = ∆(u)Λ(a, b).

Thus it suffices to consider the case where {?1, ?2} ∩ {?3, ?4} = ∅.
Pick transversal smooth polycycles K = (K,ϕ, u, κ) in Ω◦12 and L = (L,ψ, v, λ)

in Ω◦34 representing respectively 〈a〉 ∈ H̃p(Ω12) and 〈b〉 ∈ H̃q(Ω34). We form
the intersection polycycle D = (D, θ, w, κ /. λ) in Ω32 × Ω14 as in Section 4.2.1.
By definition, {{a, b}} ∈ H∗(Ω32) ⊗ H∗(Ω14) corresponds to the homology class
(−1)q+np[D] ∈ Hp+q+2−n

(
Ω32 × Ω14

)
under the isomorphism

$32,14 : H∗(Ω32)⊗H∗(Ω14) −→ H∗
(
Ω32 × Ω14

)
induced by the cross product in homology. Consider the tensor

T = a(1) ⊗
{{
a(2), b(1)

}}
⊗ b(2) ∈ H∗

(
Ω12

)
⊗H∗

(
Ω32

)
⊗H∗

(
Ω14

)
⊗H∗

(
Ω34

)
.

Applying (5.2.6) with ?1, ?3 exchanged and with Y = Ω12, Z = Ω34, we obtain

$12,32,14,34(T ) = a(1) ×Υ12,34

(
a(2) ⊗ b(1)

)
× b(2)

= ΥY 12,34Z

(
diag∗(a),diag∗(b)

)
∈ H∗

(
Ω12 × Ω32 × Ω14 × Ω34

)
where $12,32,14,34 is the isomorphism induced by the cross product in homology and
diag∗ : H∗(Ωij) → H∗(Ωij × Ωij) is induced by the diagonal map M → M ×M .
The homology class ΥY 12,34Z

(
diag∗(a),diag∗(b)

)
is represented by the polycycle

(−1)q+np
(
D, θ, w, κ′ × (κ/.λ)× λ′ : D → Ω12 × Ω32 × Ω14 × Ω34

)
where κ′ : D → Ω12 is obtained by projecting D ⊂ K × I × L × I onto K and
applying κ, whereas λ′ : D → Ω34 is obtained by projecting onto L and applying λ.
Consider now the homeomorphisms {Ji : Ω3i → Ωi3}i=2,4 induced by the inversion
of paths, the concatenation maps {ci : Ω1i × Ωi3 → Ω13}i=2,4, and the map

µ = (c2 × c4)(idΩ12
×J2 × idΩ14

×J4)(κ′ × (κ/.λ)× λ′) : D −→ Ω13 × Ω13.

It follows that the image of the homology class

Λ(a, b) = a(1)s
({{

a(2), b(1)
}}′ )

⊗
{{
a(2), b(1)

}}′′
s(b(2))

under the cross product isomorphism $13,13 : H∗(Ω13)⊗H∗(Ω13)→ H∗(Ω13×Ω13)
is represented by the polycycle (−1)q+np (D, θ, w, µ). To analyze this polycycle,
let µ1, µ2 : D → Ω13 be the first and the second coordinates of µ. For any point
(k, s, l, t) ∈ D, the path µ1(k, s, l, t) is obtained by concatenation of the following
three paths: (i) the path κ(k) from ?1 to ?2; (ii) the initial segment of the path
(κ(k))−1 from ?2 to the point κ(k)(s) = λ(l)(t); (iii) the terminal segment of the
path (λ(l))−1 from the latter point to ?3. This concatenated path goes along a
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terminal segment of the path κ(k) twice in opposite directions. Therefore the path
µ1(k, s, l, t) is homotopic to a path ν(k, s, l, t) obtained by concatenation of just two
paths: the initial segment of the path κ(k) from ?1 to the point κ(k)(s) = λ(l)(t)
and the terminal segment of the path (λ(l))−1 from the latter point to ?3. The ho-
motopy in question may be defined by an explicit formula which applies to all points
(k, s, l, t) ∈ D. Therefore, it determines a homotopy of the polycycle (D, θ, w, µ1)
into the polycycle (D, θ, w, ν). A similar argument applies to the path µ2(k, s, l, t)
and yields a homotopy of the polycycle (D, θ, w, µ2) into (D, θ, w, ν). Applying these
two homotopies coordinatewise we obtain a homotopy of the polycycles (D, θ, w, µ)
and (D, θ, w, (ν, ν)). It is obvious that the homology class represented by the latter
polycycle belongs to the image of the map diag∗ : H∗(Ω13) → H∗(Ω13 × Ω13). We
conclude that Λ(a, b) ∈ ∆(A). �

Lemma 6.2.1 and the (2− n)-antisymmetry of the intersection bibracket of M
implies that it shares all the properties established in Lemma 2.3.3. Note that the
associated pairing λ generalizes the Reidemeister pairing (5.3.3).

The results of this section are analogues of the known properties of the inter-
section bibracket in dimension two, see [MT1]. In dimension two, the role of λ is
played by the homotopy intersection form introduced in [Tu1].

6.3. The string bracket

In this section, we relate the intersection bibracket of M to the Chas–Sullivan
string bracket in loop homology. By a loop in M we mean a continuous map
S1 →M where S1 = R/Z. Let L = L(M) be the space of loops in M with compact-
open topology. The loop homology of M is H = H∗(L). The string homology, H,
of M is the S1-equivariant homology of L where S1 acts on L by (sγ)(t) = γ(s+ t)
for any s, t ∈ S1 and γ ∈ L. Thus, H = H∗ (E×S1 L) where E is the total space
of the universal S1-principal fiber bundle and E×S1 L is the quotient of E × L by
the diagonal action of S1. Since E is contractible, the projection E× L→ E×S1 L
induces a linear map E : H→ H.

Chas and Sullivan [CS1] defined a degree 2 − n Lie bracket in H called the
string bracket. For n = 2, this is the Goldman bracket discussed in Section 5.1.6.
We assume that n ≥ 3 and relate the string bracket to the Lie bracket 〈−,−〉 in
Ǎ? = A?/[A?, A?] defined in Section 5.1.4.

Lemma 6.3.1. Let ? ∈ ∂M , Ω? = Ω(M,?, ?), and let r : Ω? ↪→ L be the
inclusion map. The induced homology homomorphism r∗ : A? = H∗(Ω?) → H =
H∗(L) annihilates [A?, A?] and induces a linear map R : Ǎ? → H. The composition
(−1)n E R : Ǎ? → H is a graded Lie algebra homomorphism.

Proof. Let c : Ω? × Ω? → Ω? be the concatenation of loops. For a ∈ Ap?,
b ∈ Aq?,

ab− (−1)pqba = c∗(a× b)− (−1)pqc∗(b× a) = c∗(a× b)− c∗p∗(a× b)
where p : Ω? × Ω? → Ω? × Ω? is the transposition. Therefore, to show that
r∗(ab− (−1)pqba) = 0, it suffices to prove that r∗c∗ = r∗c∗p∗. Clearly, rcp = ( 1

2 ·)rc
where

(
1
2 ·
)

: L→ L stands for the action of 1/2 ∈ R/Z = S1. Since
(

1
2 ·
)

is homotopic
to the identity, rcp is homotopic to rc. We deduce that r∗ ([A?, A?]) = 0.

Recall the definition of the string bracket [−,−] in H. Let M : H → H be
the degree 1 lift map in the Gysin sequence of the S1-bundle E × L → E ×S1 L.
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Chas and Sullivan define a linear map •CS : H ⊗ H → H of degree −n called the
loop product (and denoted by • in [CS1]). For a detailed exposition, the reader is
referred for instance to Cieliebak [Ci]. For a homogoneous x ∈ H and any y ∈ H,

(6.3.1) [x, y] = (−1)|x|+n E
(

M(x) •CS M(y)
)
.

This formula implies that to prove the second claim of the lemma, it is enough to
show the commutativity of the diagram

(6.3.2) Ǎ? ⊗ Ǎ?

(−1)|−|MER⊗MER

��

〈−,−〉
// Ǎ?

R

��

H⊗H •CS // H.

Let a ∈ Hp(Ω?) and b ∈ Hq(Ω?) with p, q ≥ 0. Let h : A? → Ǎ? be the
canonical projection. To compute 〈h(a), h(b)〉, we pick a path ς in ∂M connecting ?
to another point ?′. By definition,

〈h(a), h(b)〉 = (−1)q+nphc∗
([

Υ̃(〈a〉 ⊗ 〈b〉)
])

= (−1)q+nphc∗
([ (

(ς−1, e?)] × (e?, ς
−1)]

)
Υ̃(〈a〉 ⊗ (ς, ς)] 〈b〉)

])
.

Let K = (K,ϕ, u, κ) be a reduced smooth polycycle in Ω◦? = Ω◦(M,?, ?) and let
L = (L,ψ, v, λ) be a reduced smooth polycycle in Ω◦?′ = Ω◦(M,?′, ?′) such that
(K,L) transversely represents the pair (〈a〉 , (ς, ς)] 〈b〉). Consider the intersection
polychain D(K,L) = (D, θ, w, κ/.λ). Then

R〈h(a), h(b)〉(6.3.3)

= (−1)q+np Rhc∗
[ (

(ς−1, e?)] × (e?, ς
−1)]

)
D(K,L)

]
= (−1)q+np

[
r∗c∗

(
(ς−1, e?)] × (e?, ς

−1)]
)
D(K,L)

]
= (−1)q+np

[(
D, θ, w, rc

(
(ς−1, e?)] × (e?, ς

−1)]
)

(κ/.λ)
)]

= (−1)q+np
[(
D, θ, w, r(ς−1, ς−1)]c(κ/.λ)

)]
= (−1)q+np

[(
D, θ, w, r′c(κ/.λ)

)]
where, in the last two lines, c is the concatenation of paths

Ω(M,?′, ?)× Ω(M,?, ?′) −→ Ω(M,?′, ?′) = Ω?′

and r′ : Ω?′ ↪→ L is the inclusion. On the other hand,

MERh(a) = ME r∗(a) = ME [r∗〈a〉] = ME [(K,ϕ, u, rκ)] .

Using the computation of the map ME : H → H in [CS1, Ci] (where this map is
denoted by ∆), we obtain

(6.3.4) MERh(a) = (−1)p
[
(K × S1, ϕ̄, ū, κ̄)

]
where we use the following notation: ϕ̄ is the partition on K×S1 induced by ϕ (by
identifying F × S1 to G × S1 via ϕF,G × idS1 for any faces F,G of the same type
in K); ū is the weight on K×S1 induced by u via the equality π0(K×S1) = π0(K);
the map κ̄ : K×S1 → L is defined using the action of S1 on L by (k, s) 7→ s

(
rκ(k)

)
for k ∈ K and s ∈ S1. The sign (−1)p in (6.3.4) is caused by a permutation of the
two factors of K × S1 with respect to [CS1, Ci]. Similarly,

MERh(b) = ME [r∗〈b〉] = ME [r′∗(ς, ς)] 〈b〉] = (−1)q
[
(L× S1, ψ̄, v̄, λ̄)

]
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where the map λ̄ : L×S1 → L is defined by (l, s) 7→ s
(
r′λ(l)

)
for l ∈ L and s ∈ S1.

The loop product •CS can be computed in terms of face homology. This gives

MERh(a) •CS MERh(b)(6.3.5)

= (−1)p+q
[
(K × S1, ϕ̄, ū, κ̄)

]
•CS

[
(L× S1, ψ̄, v̄, λ̄)

]
= (−1)p+q+np

[
(D̄, θ̄, w̄, κ̄∞λ̄)

]
.

Here D̄ is the inverse image of diagM under the map

K × S1 × L× S1 →M ×M, (k, s, l, t) 7−→
(
rκ(k)(s), r′λ(l)(t)

)
.

Note that D̄ has a structure of a manifold with faces inherited from K×S1×L×S1.
The orientation, the partition θ̄ and the weight w̄ of D̄ are as in the definition of
the intersection operation D in Section 4.2.1. The map κ̄∞λ̄ : D̄ → L sends a point
(k, s, l, t) to the loop that first goes along the loop κ̄(k, s) and then along the loop
λ̄(l, t). Note the sign (−1)np in (6.3.5), which arises from the difference between
our orientation conventions and those in [Ci].

The map K × I × L × I → K × S1 × L × S1 determined by the canonical
projection I → S1 induces an orientation-preserving diffeomorphism D ∼= D̄ which
carries the partition θ into θ̄ and the weight w into w̄. Using the action of 1/4 ∈ S1

on L, one easily constructs a homotopy between the maps r′c(κ /. λ) and κ̄∞λ̄
from D ∼= D̄ to L. It follows that[(

D, θ, w, r′c(κ/.λ)
)]

=
[
(D̄, θ̄, w̄, κ̄∞λ̄)

]
∈ H,

and we deduce (6.3.2) from (6.3.3) and (6.3.5). �

6.4. Moment maps and Hamiltonian reduction

We show that a spherical boundary component of the manifold M determines a
moment map for the intersection bibracket. This allows us to define an H0-Poisson
structure on the Pontryagin algebras of certain manifolds without boundary.

6.4.1. The moment map. Assume that n = dim(M) ≥ 3 and that S is a
component of ∂M homeomorphic to the sphere Sn−1. Fix a point ? ∈ S and set
A? = H∗(Ω?) where Ω? = Ω(M,?, ?). The orientation-preserving homeomorphisms
Sn−1 ∼= S represent an element µπ = µπS of πn−1(M,?). Recall the connecting

homomorphism ∂n−1 : πn−1(M,?)→ An−2
? = Hn−2(Ω?) of Section 5.1.3 and set

µ = µS = ∂n−1(µπ) ∈ An−2
? .

Lemma 6.4.1. The element µ is a moment map for the intersection bibracket
{{−,−}} in A? in the sense of Section 2.4.2.

Proof. Consider the path homology category C = C(M) of M and the inter-
section bibracket {{−,−}} in the associated graded algebra A = A(C). Pick a smooth
closed n-ball D ⊂ Int(M) and consider the smooth manifold P = M \ Int(D).
As above, we can consider the path homology category of P and the intersection
bibracket {{−,−}}P in the associated graded algebra. Consider the restriction of
{{−,−}}P to the algebra

B =
⊕

?1,?2∈S
H∗
(
Ω(P, ?1, ?2)

)
.
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The inclusion P ↪→ M induces a graded algebra homomorphism ι : B → A. The
definition of the intersection bibracket implies that the following diagram commutes:

(6.4.1) B ⊗B
{{−,−}}P //

ι⊗ι
��

B ⊗B

ι⊗ι
��

A⊗A
{{−,−}}

// A⊗A.

?′

α

? ?′′β

∂DS

Figure 6.4.1. The manifold P = M \ Int(D).

We must prove that {{µ, a}} = a⊗ 1− 1⊗ a for any a ∈ A? ⊂ A. To this end,
fix a path α in S leading from ? to a distinct point ?′ ∈ S: see Figure 6.4.1. The
path α represents an element in H0(Ω, ?, ?′) ⊂ A0 denoted also by α. This element
is invertible, and its inverse α−1 ∈ A0 is represented by the inverse path. Set

a′ = α−1aα ∈ H∗
(
Ω(M,?′, ?′)

)
.

(In the notation of Section 4.3.4, a′ = (α, α)#(a).) Clearly, {{µ, a′}} = α−1 {{µ, a}}α.
Hence it suffices to prove that

(6.4.2) {{µ, a′}} = a′α−1 ⊗ α− α−1 ⊗ αa′.
The homology class a′ can be represented by a polycycle K in Ω◦(M,?′, ?′). Choos-
ing the ball D close enough to ∂M , we can ensure that it does not meet the image
of K. Then a′ = ι(b) for the homology class b ∈ H∗(Ω(P, ?′, ?′)) represented by K.
Similarly, µ = ι(τ) for some τ ∈ Hn−2(Ω(P, ?, ?)). We deduce from (6.4.1) that

{{µ, a′}} = (ι⊗ ι) ({{τ, b}}P ) .

To proceed, we pick an embedded path in P leading from a point ?′′ ∈ ∂D to ?′

and meeting ∂P only in the endpoints. This path defines an invertible element
β ∈ H0(Ω(P, ?′′, ?′)). Set

c = βbβ−1 ∈ H∗
(
Ω(P, ?′′, ?′′)

)
.

Note that {{τ, c}}P = 0 since c can be represented by a polycycle whose image does
not meet S. Therefore

{{µ, a′}} = (ι⊗ ι) ({{τ, b}}P ) = (ι⊗ ι)
({{
τ, β−1cβ

}}
P

)
= (ι⊗ ι)

({{
τ, β−1

}}
P
cβ + β−1c {{τ, β}}P

)
= (ι⊗ ι)

(
−β−1 {{τ, β}}P β

−1cβ + β−1c {{τ, β}}P
)
.

By Lemma 5.3.2, we obtain {{β, τ}}P = −α⊗βα−1. Therefore {{τ, β}}P = βα−1⊗α.
We conclude that

{{µ, a′}} = (ι⊗ ι)
(
−α−1 ⊗ αb+ bα−1 ⊗ α

)
,

which proves (6.4.2). �
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We deduce from Lemma 6.4.1 that the following three conditions are equivalent:

(i) A? = K;
(ii) µ = 0;
(iii) the intersection bibracket in A? is zero.

6.4.2. Intersections in manifolds without boundary. Let W be a smooth
connected oriented manifold of dimension n ≥ 3 without boundary. Our construc-
tion of a bibracket in the Pontryagin algebra of a manifold requires the base point
to lie in the boundary, so that it does not apply to W . However, under certain
assumptions on W we can use the Hamiltonian reduction of Section 2.4 to define
an H0-Poisson structure on the Pontryagin algebra of W . To this end, pick a base
point ? ∈W and a smooth closed n-ball D ⊂W with ? ∈ ∂D. Consider the smooth
manifold M = W \ Int(D) with ∂M = ∂D = Sn−1; as everywhere in this chapter,
we assume that the condition (5.1.2) is satisfied. Let

A? = H∗
(
Ω(M,?, ?)

)
and B? = H∗

(
Ω(W, ?, ?)

)
be the Pontryagin algebras of M and W , respectively. The inclusion M ↪→ W
induces a graded algebra homomorphism p : A? → B?, Clearly, p(µ) = 0 where
µ = µ∂M ∈ An−2

? . Therefore, Ker p ⊃ A?µA?.

Theorem 6.4.2. Assume that the homomorphism p : A? → B? is onto and
Ker p = A?µA?. Then the intersection bibracket {{−,−}} in A? induces an H0-
Poisson structure of degree 2 − n on B?. This structure does not depend on the
choice of the ball D.

Proof. The first claim follows from Lemma 2.4.3. The independence of the
choice of the ball is a consequence of the naturality of the intersection bibracket
under diffeomorphisms, and the fact that for any balls D1, D2 ⊂ W with ? ∈
∂D1 ∩ ∂D2 there is a diffeomorphism f : W →W such that f(D1) = D2, f(?) = ?,
and f is isotopic to idW in the class of diffeomorphisms W → W fixing ?. Such
an f acts on B? as the identity, and the result follows. �

Recall from Theorem 2.4.2 that an H0-Poisson structure on B? induces Ger-
stenhaber brackets on the trace algebras of B?. Hence Theorem 6.4.2 allows us to
associate Gerstenhaber algebras with W .

Some manifolds do not satisfy the assumptions of Theorem 6.4.2, for example,
W = Sn (in this case A? = K and B? = K[x] where the generator x has degree
n − 1, cf. [BS]). Nonetheless, according to [HL] and [FT], these assumptions are
satisfied if W is a closed simply connected manifold whose cohomology algebra
H∗(W ) = H∗(W ;K) is not generated by a single element and K is a field whose
characteristic is equal to zero or is sufficiently large.

6.4.3. Example. We consider the example of Section 5.3.3 and keep the same
notation. Thus W = (Sp1 × Sq1) ] · · · ] (Spg × Sqg ) and M = W \ (an open ball).
The element µ = µ∂M ∈ A? = H∗(Ω(M,?, ?)) can be computed as follows. As
a topological manifold, M is the boundary-connected sum of the manifolds Mj =
(Spj × Sqj ) \ (an open ball) where j = 1, . . . , g. Hence

µπ = µπ∂M =

g∑
j=1

inj
(
µπ∂Mj

)
∈ πn−1(M)
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where inj : πn−1(Mj) → πn−1(M) is the inclusion homomorphism (we can ignore
the base point because Mj and M are simply-connected). By the definition of
the Whitehead bracket [−,−]Wh in π∗(M), we have inj(µ

π
∂Mj

) = [xπj , y
π
j ]Wh where

xπj ∈ πpj (M) and yπj ∈ πqj (M) are represented by the two factors of Mj . Thus,

µπ = [xπ1 , y
π
1 ]Wh + · · ·+ [xπg , y

π
g ]Wh ∈ πn−1(M).

Recall that the bracket [−,−] in A? induced by the Pontryagin multiplication is
related to the Whitehead bracket in π∗(M) by the formula

[xi, yi] =
[
∂pi(x

π
i ), ∂qi(y

π
i )
]

= (−1)pi ∂pi+qi−1

(
[xπi , y

π
i ]Wh

)
∈ A?.

Therefore

µ = (−1)p1 [x1, y1] + · · ·+ (−1)pg [xg, yg] ∈ A?.
A direct computation on the generators x1, y1, . . . , xg, yg of A? using (5.3.5)–(5.3.6)
confirms that µ is a moment map of the intersection bibracket {{−,−}} of M , as
claimed by Lemma 6.4.1.

Consider in more detail the case g = 1 and set

p = p1, q = q1, x = x1 ∈ Ap−1
? , y = y1 ∈ Aq−1

? .

The loop space of W = Sp × Sq based at ? is the product of the loop spaces of Sp

and Sq. By the Künneth theorem, the Pontryagin algebra B? = H∗(Ω(W, ?, ?)) is
(as a graded algebra) the tensor product of the Pontryagin algebras of Sp and Sq.
Since the graded algebra A? is freely generated by x, y, the quotient A?/A?µA? is
the commutative graded algebra freely generated by x, y. It is clear that the as-
sumptions of Theorem 6.4.2 are satisfied here for any ground ring K. Theorem 6.4.2
yields an H0-Poisson structure 〈−,−〉 of degree 2−n on the (commutative) graded
algebra B?. The bracket 〈−,−〉 in B̌? = B? is then a Gerstenhaber bracket of degree
2−n. It coincides with the Gerstenhaber bracket {−,−} in Com(A?) computed in
Section 5.3.3.

6.4.4. Example. We consider the example of Section 5.3.4 and keep the same
notation. Thus, W = S1 × Sn−1 and M = W \ (an open ball). The element
µ = µ∂M ∈ A? = H∗(Ω(M,?, ?)) can be computed as follows. Consider the cylinder
I × Sn−1 with the product orientation and pick a closed n-ball D in its interior.
Then

[∂D] = [{1} × Sn−1]− [{0} × Sn−1] ∈ πn−1

(
(I × Sn−1) \ Int(D)

)
.

(Here D carries the orientation induced by M and ∂D carries the orientation in-
herited from D.) It follows that µπ(M) = (xπ)−1 · yπ − yπ where the dot denotes
the action of π1(M,?) on πn−1(M,?). We deduce that

µ = x−1yx− y ∈ A?.

A direct computation using (5.3.7)–(5.3.9) confirms that µ is a moment map of the
intersection bibracket {{−,−}} of M , as claimed by Lemma 6.4.1.

By the Künneth theorem, the Pontryagin algebra B? of W is (as a graded
algebra) the tensor product of the Pontryagin algebras of S1 and Sn−1. Thus, B?
is the commutative graded algebra freely generated by x±1 ∈ B0

? and y ∈ Bn−2
? .

As a consequence, the assumptions of Theorem 6.4.2 are satisfied (for any ground
ring K) so that the intersection bibracket {{−,−}} of M induces an H0-Poisson
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structure 〈−,−〉 of degree 2− n on B?. Since B? is commutative, this structure is
a Gerstenhaber bracket of degree 2− n. According to (5.3.7)–(5.3.9), it is given by

〈x, x〉 = 0, 〈x, y〉 = −x, 〈y, y〉 = 0.

6.4.5. Remark. The results of this section are high-dimensional analogues of
the well-known properties of surfaces. The Pontryagin algebra of a closed connected
oriented surface is the group algebra B = K[π] where π is the fundamental group
of the surface. Then B̌ = B/[B,B] = K[π̌] is the module freely generated by the
set π̌ of conjugacy classes in π. The Goldman Lie bracket in B̌ is the canonical
H0-Poisson structure on B, see [MT1, Section 9].
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